OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S2 — Mar. 10, 2014
  • pp: A465–A480

Light trapping design for low band-gap polymer solar cells

Stephen Foster and Sajeev John  »View Author Affiliations


Optics Express, Vol. 22, Issue S2, pp. A465-A480 (2014)
http://dx.doi.org/10.1364/OE.22.00A465


View Full Text Article

Enhanced HTML    Acrobat PDF (2261 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate numerically a 2-D nanostructured design for light trapping in a low band-gap polymer solar cell. Finite element method simulations are used to study the effect of varying nanostructure periodicity, height, and shape on active layer absorption. Maintaining a constant active layer thickness of 100nm we observe an enhancement in solar absorption of almost 40% relative to a planar cell. Improvements of this magnitude enable single-junction, low-band-gap cells to achieve power conversion efficiencies of 11.2% and perform competitively with even state-of-the-art tandem cells. Our design is also shown to significantly outperform tandem cells at off-normal angles of incidence.

© 2014 Optical Society of America

OCIS Codes
(040.5350) Detectors : Photovoltaic
(050.0050) Diffraction and gratings : Diffraction and gratings
(350.6050) Other areas of optics : Solar energy
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Light Trapping for Photovoltaics

History
Original Manuscript: November 28, 2013
Revised Manuscript: February 13, 2014
Manuscript Accepted: February 15, 2014
Published: February 25, 2014

Citation
Stephen Foster and Sajeev John, "Light trapping design for low band-gap polymer solar cells," Opt. Express 22, A465-A480 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-S2-A465


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Z. He, C. Zhong, X. Huang, W.-Y. Wong, H. Wu, L. Chen, S. Su, and Y. Cao, “Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill dactor in polymer solar cells,” Adv. Mater. 23(40), 4636–4643 (2011). [CrossRef] [PubMed]
  2. X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. 24(22), 3046–3052 (2012). [CrossRef] [PubMed]
  3. Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics 6(9), 591–595 (2012). [CrossRef]
  4. J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency,” Nat. Commun. 4, 1446 (2013). [CrossRef] [PubMed]
  5. S. Nam, J. Han, Y. R. Do, H. Kim, S. Yim, and Y. Kim, “Two-dimensional photonic crystal arrays for polymer:fullerene solar cells,” Nanotechnology 22(46), 465403 (2011). [CrossRef] [PubMed]
  6. A. Raman, Z. Yu, and S. Fan, “Dielectric nanostructures for broadband light trapping in organic solar cells,” Opt. Express 19(20), 19015–19026 (2011). [CrossRef] [PubMed]
  7. D. H. Wang, J. Seifter, J. H. Park, D.-G. Choi, and A. J. Heeger, “Efficiency increase in flexible bulk heterojunction solar cells with nano-patterned indium zinc oxide anode,” Adv. Energy Mater. 2(11), 1319–1322 (2012). [CrossRef]
  8. D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9(7), 2742–2746 (2009). [CrossRef] [PubMed]
  9. L. Chen, W. E. I. Sha, and W. C. H. Choy, “Light harvesting improvement of organic solar cells with self-enhanced active layer designs,” Opt. Express 20(7), 8175–8185 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-20-7-8175 . [CrossRef] [PubMed]
  10. J. R. Tumbleston, D.-H. Ko, E. T. Samulski, and R. Lopez, “Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers,” Opt. Express 17(9), 7670–7681 (2009). [CrossRef] [PubMed]
  11. K. S. Nalwa and S. Chaudhary, “Design of light-trapping microscale-textured surfaces for efficient organic solar cells,” Opt. Express 18(5), 5168–5178 (2010). [CrossRef] [PubMed]
  12. D. Duché, L. Escoubas, J.-J. Simon, C. Gourgon, C. Masclaux, Ph. Torchio, J. Le Rouzo, and F. Flory, “Photonic crystals for improving light absorption in organic solar cells,” Proc. SPIE 8256, 82561K (2012). [CrossRef]
  13. X. H. Li, W. E. I. Sha, W. C. H. Choy, D. D. S. Fung, and F. X. Xie, “Efficient inverted polymer solar cells with directly patterned active layer and silver back grating,” J. Phys. Chem. C 116(12), 7200–7206 (2012). [CrossRef]
  14. J. You, X. Li, F. X. Xie, W. E. I. Sha, J. H. W. Kwong, G. Li, W. C. H. Choy, and Y. Yang, “Surface plasmon and scattering-enhanced low-bandgap polymer solar cell by a metal grating back electrode,” Adv. Energy Mater. 2(10), 1203–1207 (2012). [CrossRef]
  15. I. Kim, D. S. Jeong, T. S. Lee, W. S. Lee, and K.-S. Lee, “Plasmonic nanograting design for inverted polymer solar cells,” Opt. Express 20(S5), A729–A739 (2012). [CrossRef] [PubMed]
  16. X. Li, W. C. H. Choy, X. Ren, J. Xin, P. Lin, and D. C. W. Leung, “Polarization-independent efficiency enhancement of organic solar cells by using 3-dimensional plasmonic electrode,” Appl. Phys. Lett. 102(15), 153304 (2013). [CrossRef]
  17. K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, and C. J. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films 516(20), 7167–7170 (2008). [CrossRef]
  18. W.-L. Min, A. P. Betancourt, P. Jiang, and B. Jiang, “Bioinspired broadband antireflection coatings on GaSb,” Appl. Phys. Lett. 92(14), 141109 (2008). [CrossRef]
  19. W. C. Luk, K. M. Yeung, K. C. Tam, K. L. Ng, K. C. Kwok, C. Y. Kwong, A. M. C. Ng, and A. B. Djurisic, “Enhanced conversion efficiency of polymeric photovoltaic cell by nanostructured antireflection coating,” Org. Electron. 12(4), 557–561 (2011). [CrossRef]
  20. T. Søndergaard, J. Gadegaard, P. K. Kristensen, T. K. Jensen, T. G. Pedersen, and K. Pedersen, “Guidelines for 1D-periodic surface microstructures for antireflective lenses,” Opt. Express 18(25), 26245–26258 (2010). [CrossRef] [PubMed]
  21. H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011). [CrossRef]
  22. L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer,” Nat. Photonics 6(3), 180–185 (2012). [CrossRef]
  23. G. Demésy, F. Zolla, A. Nicolet, M. Commandré, and C. Fossati, “The finite element method as applied to the diffraction by an anisotropic grating,” Opt. Express 15(26), 18089–18102 (2007). [CrossRef] [PubMed]
  24. P. Dular, C. Geuzaine, F. Henrotte, and W. Legros, “A general environment for the treatment of discrete problems and its application to the finite element method,” IEEE Trans. Magn. 34(5), 3395–3398 (1998). [CrossRef]
  25. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998), Vol. I.
  26. M. F. Al-Kuhaili, S. M. A. Durrani, and E. E. Khawaja, “Effects of preparation conditions and thermocoloration on the optical properties of thin films of molybdenum oxide,” Thin Solid Films 408(1–2), 188–193 (2002). [CrossRef]
  27. H. Hoppe, N. S. Sariciftci, and D. Meissner, “Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells,” Mol. Cryst. Liq. Cryst. 385(1), 113–119 (2002). [CrossRef]
  28. J. You, C.-C. Chen, Z. Hong, K. Yoshimura, K. Ohya, R. Xu, S. Ye, J. Gao, G. Li, and Y. Yang, “10.2% power conversion efficiency polymer tandem solar cells consisting of two identical sub-cells,” Adv. Mater. 25(29), 3973–3978 (2013). [CrossRef] [PubMed]
  29. A. Naqavi, K. Söderström, F.-J. Haug, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Understanding of photocurrent enhancement in real thin film solar cells: towards optimal one-dimensional gratings,” Opt. Express 19(1), 128–140 (2011). [CrossRef] [PubMed]
  30. S. Eyderman, S. John, and A. Deinega, “Solar light trapping in slanted conical-pore photonic crystals: Beyond statistical ray trapping,” J. Appl. Phys. 113(15), 154315 (2013). [CrossRef]
  31. L. J. Guo, “Nanoimprint lithography: methods and material requirements,” Adv. Mater. 19(4), 495–513 (2007). [CrossRef]
  32. S. Tawfick, M. De Volder, D. Copic, S. J. Park, C. R. Oliver, E. S. Polsen, M. J. Roberts, and A. J. Hart, “Engineering of micro- and nanostructured surfaces with anisotropic geometries and properties,” Adv. Mater. 24(13), 1628–1674 (2012). [CrossRef] [PubMed]
  33. K. S. Nalwa, J.-M. Park, K.-M. Ho, and S. Chaudhary, “On realizing higher efficiency polymer solar cells using a textured substrate platform,” Adv. Mater. 23(1), 112–116 (2011). [CrossRef] [PubMed]
  34. S. Biswas, O. Shalev, and M. Shtein, “Thin-film growth and patterning techniques for small molecular organic compounds used in optoelectronic device applications,” Annu. Rev. Chem. Biomol. Eng. 4(1), 289–317 (2013). [CrossRef] [PubMed]
  35. A. M. Coclite, R. M. Howden, D. C. Borrelli, C. D. Petruczok, R. Yang, J. L. Yagüe, A. Ugur, N. Chen, S. Lee, W. J. Jo, A. Liu, X. Wang, and K. K. Gleason, “25th anniversary article: Cvd polymers: A new paradigm for surface modification and device fabrication,” Adv. Mater. 25(38), 5392–5423 (2013). [CrossRef] [PubMed]
  36. F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007). [CrossRef]
  37. Y. Zhou, C. Fuentes-Hernandez, J. W. Shim, T. M. Khan, and B. Kippelen, “High performance polymeric charge recombination layer for organic tandem solar cells,” Energy Environ. Sci. 5(12), 9827–9832 (2012). [CrossRef]
  38. L. A. A. Pettersson, S. Ghosh, and O. Inganäs, “Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene)-poly(4-styrenesulfonate),” Org. Electron. 3(3-4), 143–148 (2002). [CrossRef]
  39. H. K. Raut, S. S. Dinachali, A. Y. He, V. A. Ganesh, M. S. M. Saifullah, J. Law, and S. Ramakrishna, “Robust and durable polyhedral oligomeric silsesquioxane-based anti-reflective nanostructures with broadband quasi-omnidirectional properties,” Energy Environ. Sci. 6(6), 1929–1937 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited