OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S2 — Mar. 10, 2014
  • pp: A481–A490

Reduced optical loss in mechanically stacked multi-junction organic solar cells exhibiting complementary absorptions

Yen-Tseng Lin, Chu-Hsien Chou, Fang-Chung Chen, Chih-Wei Chu, and Chain-Shu Hsu  »View Author Affiliations


Optics Express, Vol. 22, Issue S2, pp. A481-A490 (2014)
http://dx.doi.org/10.1364/OE.22.00A481


View Full Text Article

Enhanced HTML    Acrobat PDF (2550 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper describes a promising approach toward preparing effective electrical and optical interconnections for tandem organic photovoltaic devices (OPVs). The first subcell featured a semi-transparent electrode, which allowed a portion of the solar irradiation to pass through and to enter the second subcell exhibiting complementary absorption behavior. The resulting multi-junction OPV had multiple contacts such that the subcells could be easily connected either in series or in parallel. More importantly, we used UV-curable epoxy to “mechanically” stack the two subcells and to eliminate the air gap between them, thereby reducing the optical loss induced by mismatches of refractive indices. Therefore, an improved power conversion efficiency of approximately 6.5% has been achieved.

© 2014 Optical Society of America

OCIS Codes
(040.5350) Detectors : Photovoltaic
(160.4890) Materials : Organic materials
(350.6050) Other areas of optics : Solar energy

ToC Category:
Photovoltaics

History
Original Manuscript: January 17, 2014
Revised Manuscript: February 13, 2014
Manuscript Accepted: February 15, 2014
Published: February 25, 2014

Citation
Yen-Tseng Lin, Chu-Hsien Chou, Fang-Chung Chen, Chih-Wei Chu, and Chain-Shu Hsu, "Reduced optical loss in mechanically stacked multi-junction organic solar cells exhibiting complementary absorptions," Opt. Express 22, A481-A490 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-S2-A481


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 39),” Prog. Photovolt. Res. Appl. 20(1), 12–20 (2012). [CrossRef]
  2. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p‐n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961). [CrossRef]
  3. G. F. Brown and J. Wu, “Third generation photovoltaics,” Laser Photon. Rev. 3(4), 394–405 (2009). [CrossRef]
  4. A. De Vos, “Detailed balance limit of the efficiency of tandem solar cells,” J. Phys. D Appl. Phys. 13(5), 839–846 (1980). [CrossRef]
  5. D. Shahrjerdi, S. W. Bedell, C. Ebert, C. Bayram, B. Hekmatshoar, K. Fogel, P. Lauro, M. Gaynes, T. Gokmen, J. A. Ott, and D. K. Sadana, “High-efficiency thin-film InGaP/InGaAs/Ge tandem solar cells enabled by controlled spalling technology,” Appl. Phys. Lett. 100(5), 053901 (2012). [CrossRef]
  6. G. Li, R. Zhu, and Y. Yang, “Polymer solar cells,” Nat. Photonics 6(3), 153–161 (2012). [CrossRef]
  7. H. L. Yip and A. K.-Y. Jen, “Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells,” Energy Environ. Sci. 5(3), 5994–6011 (2012). [CrossRef]
  8. J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011). [CrossRef] [PubMed]
  9. A. L. Roes, E. A. Alsema, K. Blok, and M. K. Patel, “Ex-ante environmental and economic evaluation of polymer photovoltaics,” Prog. Photovolt. Res. Appl. 17(6), 372–393 (2009). [CrossRef]
  10. A. Kumar, R. Devine, C. Mayberry, B. Lei, G. Li, and Y. Yang, “Origin of radiation-induced degradation in polymer solar cells,” Adv. Funct. Mater. 20(16), 2729–2736 (2010). [CrossRef]
  11. J. L. Wu, F. C. Chen, M. K. Chuang, and K. S. Tan, “Near-infrared laser-driven polymer photovoltaic devices and their biomedical applications,” Energy Environ. Sci. 4(9), 3374–3378 (2011). [CrossRef]
  12. G. Dennler, M. C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf, and C. J. Brabec, “Design rules for donors in bulk-heterojunction tandem solar cells-towards 15% energy-conversion efficiency,” Adv. Mater. 20(3), 579–583 (2008). [CrossRef]
  13. S. Sista, X. Hong, L. M. Chen, and Y. Yang, “Tandem polymer photovoltaic cells—current status, challenges and future outlook,” Energy Environ. Sci. 4(5), 1606–1620 (2011). [CrossRef]
  14. L. Dou, J. You, J. Yang, C. C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer,” Nat. Photonics 6(3), 180–185 (2012). [CrossRef]
  15. J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C. C. Chen, J. Gao, G. Li, and Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency,” Nat Commun 4, 1446 (2013). [CrossRef] [PubMed]
  16. M. Riede, C. Uhrich, J. Widmer, R. Timmreck, D. Wynands, G. Schwartz, W. Gnehr, D. Hildebrandt, A. Weiss, J. Hwang, S. Sundarraj, P. Erk, M. Pfeiffer, and K. Leo, “Efficient organic tandem solar cells based on small molecules,” Adv. Funct. Mater. 21(16), 3019–3028 (2011). [CrossRef]
  17. F. C. Chen and C. H. Lin, “Construction and characteristics of tandem organic solar cells featuring small molecule-based films on polymer-based subcells,” J. Phys. D Appl. Phys. 43(2), 025104 (2010). [CrossRef]
  18. W. C. Chen, S. C. Chien, F. C. Chen, and C. S. Hsu, “Stacked structures for assembling multiple organic photovoltaic devices,” Appl. Phys. Express 5(7), 072301 (2012). [CrossRef]
  19. V. Shrotriya, E. H. E. Wu, G. Li, Y. Yao, and Y. Yang, “Efficient light harvesting in multiple-device stacked structure for polymer solar cells,” Appl. Phys. Lett. 88(6), 064104 (2006). [CrossRef]
  20. R. F. Bailey-Salzman, B. P. Rand, and S. R. Forrest, “Semitransparent organic photovoltaic cells,” Appl. Phys. Lett. 88(23), 233502 (2006). [CrossRef]
  21. Z. Tang, Z. George, Z. Ma, J. Bergqvist, K. Tvingstedt, K. Vandewal, E. Wang, L. M. Andersson, M. R. Andersson, F. Zhang, and O. Inganäs, “Semi-transparent tandem organic solar cells with 90% internal quantum efficiency,” Adv. Energy Mat. 2(12), 1467–1476 (2012). [CrossRef]
  22. W. T. Lin, Y. T. Lin, C. H. Chou, F. C. Chen, and C. S. Hsu, “Organic solar cells comprising multiple-device stacked structures exhibiting complementary absorption behavior,” Sol. Energy Mater. Sol. Cells 120, 724–727 (2014). [CrossRef]
  23. Y. J. He, H. Y. Chen, J. H. Hou, and Y. F. Li, “Indene-C60 bisadduct: a new acceptor for high-performance polymer solar cells,” J. Am. Chem. Soc. 132(4), 1377–1382 (2010). [CrossRef] [PubMed]
  24. M. A. Ibrahem, H. Y. Wei, M. H. Tsai, K. C. Ho, J. J. Shyue, and C. W. Chu, “Solution-processed zinc oxide nanoparticles as interlayer materials for inverted organic solar cells,” Sol. Energy Mater. Sol. Cells 108, 156–163 (2013). [CrossRef]
  25. J. K. Lee, W. L. Ma, C. J. Brabec, J. Yuen, J. S. Moon, J. Y. Kim, K. Lee, G. C. Bazan, and A. J. Heeger, “Processing additives for improved efficiency from bulk heterojunction solar cells,” J. Am. Chem. Soc. 130(11), 3619–3623 (2008). [CrossRef] [PubMed]
  26. F. C. Chen, H. C. Tseng, and C. J. Ko, “Solvent mixtures for improving device efficiency of polymer photovoltaic devices,” Appl. Phys. Lett. 92(10), 103316 (2008). [CrossRef]
  27. G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, and Y. Yang, ““Solvent annealing” effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes,” Adv. Funct. Mater. 17(10), 1636–1644 (2007). [CrossRef]
  28. F. C. Chen, C. J. Ko, J. L. Wu, and W. C. Chen, “Morphological study of P3HT:PCBM blend films prepared through solvent annealing for solar cell applications,” Sol. Energy Mater. Sol. Cells 94(12), 2426–2430 (2010). [CrossRef]
  29. V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “Accurate measurement and characterization of organic solar cells,” Adv. Funct. Mater. 16(15), 2016–2023 (2006). [CrossRef]
  30. L. J. Huo, S. Q. Zhang, X. Guo, F. Xu, Y. F. Li, and J. H. Hou, “Replacing alkoxy groups with alkythienyl groups: A fesible approach to improve the properties of photovoltaic polymers,” Angew. Chem. Int. Ed. 50(41), 9697–9702 (2011). [CrossRef]
  31. Y. Yao, H. Y. Chen, J. Huang, and Y. Yang, “Low voltage and fast speed all-polymeric optocouplers,” Appl. Phys. Lett. 90(5), 053509 (2007). [CrossRef]
  32. C. H. Chou, J. K. Chuang, and F. C. Chen, “High-performance flexible waveguiding photovoltaics,” Sci. Rep. 3, 2244 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited