OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S3 — May. 5, 2014
  • pp: A607–A621

Annealing of SnO2 thin films by ultra-short laser pulses

D. Scorticati, A. Illiberi, T. Bor, S.W.H. Eijt, H. Schut, G.R.B.E. Römer, D.F. de Lange, and A.J. Huis in t Veld  »View Author Affiliations

Optics Express, Vol. 22, Issue S3, pp. A607-A621 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1488 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Post-deposition annealing by ultra-short laser pulses can modify the optical properties of SnO2 thin films by means of thermal processing. Industrial grade SnO2 films exhibited improved optical properties after picosecond laser irradiation, at the expense of a slightly increased sheet resistance [Proc. SPIE 8826, 88260I (2013)]. The figure of merit ϕ = T10 / Rsh was increased up to 59% after laser processing. In this paper we study and discuss the causes of this improvement at the atomic scale, which explain the observed decrease of conductivity as well as the observed changes in the refractive index n and extinction coefficient k. It was concluded that the absorbed laser energy affected the optoelectronic properties preferentially in the top 100-200 nm region of the films by several mechanisms, including the modification of the stoichiometry, a slight desorption of dopant atoms (F), adsorption of hydrogen atoms from the atmosphere and the introduction of laser-induced defects, which affect the strain of the film.

© 2014 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(140.7090) Lasers and laser optics : Ultrafast lasers
(350.6050) Other areas of optics : Solar energy
(310.6628) Thin films : Subwavelength structures, nanostructures
(310.7005) Thin films : Transparent conductive coatings

ToC Category:

Original Manuscript: January 8, 2014
Revised Manuscript: February 27, 2014
Manuscript Accepted: February 28, 2014
Published: March 12, 2014

D. Scorticati, A. Illiberi, T. Bor, S.W.H. Eijt, H. Schut, G.R.B.E. Römer, D.F. de Lange, and A.J. Huis in t Veld, "Annealing of SnO2 thin films by ultra-short laser pulses," Opt. Express 22, A607-A621 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Scorticati, G. R. B. E. Römer, T. Bor, W. Ogieglo, M. Klein Gunnewiek, A. Lenferink, C. Otto, J. Z. P. Skolski, F. Grob, D. F. de Lange, and A. J. Huis in t’ Veld, “Optical and electrical properties of SnO2 thin films after ultra-short pulsed laser annealing,” Proc. SPIE 8826, Laser Material Processing for Solar Energy Devices II, 88260I (2013).
  2. M. Batzill and U. Diebold, “The surface and materials science of tin oxide,” Prog. Surf. Sci. 79(2-4), 47–154 (2005). [CrossRef]
  3. R. Gordon, “Criteria for choosing transparent conductors,” MRS Bull. 25(08), 52–57 (2000). [CrossRef]
  4. S. F. Tseng, W. T. Hsiao, D. Chiang, K. C. Huang, and C. P. Chou, “Mechanical and optoelectric properties of post-annealed fluorine-doped tin oxide films by ultraviolet laser irradiation,” Appl. Surf. Sci. 257(16), 7204–7209 (2011). [CrossRef]
  5. W. Chung, M. O. Thompson, P. Wickboldt, D. Toet, and P. G. Carey, “Room temperature indium tin oxide by XeCl excimer laser annealing for flexible display,” Thin Solid Films 460(1-2), 291–294 (2004). [CrossRef]
  6. J. J. Kim, J. Y. Bak, J. H. Lee, H. S. Kim, N. W. Jang, Y. Yun, and W. J. Lee, “Characteristics of laser-annealed ZnO thin film transistors,” Thin Solid Films 518(11), 3022–3025 (2010). [CrossRef]
  7. G. Legeay, X. Castel, R. Benzerga, and J. Pinel, “Excimer laser beam/ITO interaction: from laser processing to surface reaction,” Phys. Status Solidi 5(10), 3248–3254 (2008). [CrossRef]
  8. C. W. Cheng, C. Y. Lin, W. C. Shen, Y. J. Lee, and J. S. Chen, “Patterning crystalline indium tin oxide by high repetition rate femtosecond laser-induced crystallization,” Thin Solid Films 518(23), 7138–7142 (2010). [CrossRef]
  9. M. F. Chen, K. M. Lin, and Y. S. Ho, “Effects of laser-induced recovery process on conductive property of SnO2:F thin film,” Mater. Sci. Eng. B 176(2), 127–131 (2011). [CrossRef]
  10. B. D. Ahn, W. H. Jeong, H. S. Shin, D. L. Kim, H. J. Kim, J. K. Jeong, S. H. Choi, and M. K. Han, “Effect of excimer laser annealing on the performance of amorphous indium gallium zinc oxide thin-film transistors,” Electrochem. Sol.- St. Lett. 12, H430–H432 (2009).
  11. J. Chae, L. Jang, and K. Jain, “High-resolution, resistless patterning of indium-tinoxide thin films using excimer laser projection annealing process,” Mater. Lett. 64(8), 948–950 (2010). [CrossRef]
  12. G. Haacke, “New figure of merit for transparent conductors,” J. Appl. Phys. 47(9), 4086–4089 (1976). [CrossRef]
  13. D. Scorticati, G. R. B. E. Römer, D. F. de Lange, and A. J. Huis in ’t Veld, “Ultra-short-pulsed laser-machined nanogratings of laser-induced periodic surface structures on thin molybdenum layers,” J. Nanophotonics 6(1), 063528 (2012).
  14. S. W. H. Eijt, R. Kind, S. Singh, H. Schut, W. J. Legerstee, R. W. A. Hendrikx, V. L. Svetchnikov, R. J. Westerwaal, and B. Dam, “Positron depth profiling of the structural and electronic structure transformations of hydrogenated Mg-based thin films,” J. Appl. Phys. 105(4), 043514 (2009). [CrossRef]
  15. A. Van Veen, H. Schut, J. de Vries, R. A. Hakvoort, and M. R. Ijpma, “Positron beams for solids and surfaces,” AIP Conf. Proc. 218, 171–196 (1990).
  16. A. de Graaf, J. van Deelen, P. Poodt, T. van Mol, K. Spee, F. Grob, and A. Kuypers, “Development of atmospheric pressure CVD processes for high quality transparent conductive oxides,” En. Proc. 2(1), 41–48 (2010). [CrossRef]
  17. A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4465 (2003). [CrossRef]
  18. J. Bonse, J. M. Wrobel, J. Kruger, and W. Kautek, “Ultrashort-pulse laser ablation of indium phosphide in air,” Appl. Phys., A Mater. Sci. Process. 72(1), 89–94 (2001). [CrossRef]
  19. Y. Jee, M. F. Becker, and R. M. Walser, “Laser-induced damage on single-crystal metal surfaces,” J. Opt. Soc. Am. B 5(3), 648–659 (1988). [CrossRef]
  20. V. Consonni, G. Rey, H. Roussel, and D. Bellet, “Thickness effects on the texture development of fluorine-doped SnO2 thin films: The role of surface and strain energy,” J. Appl. Phys. 111(3), 033523 (2012). [CrossRef]
  21. B. Zhang, Y. Tian, J. X. Zhang, and W. Cai, “Structural, optical, electrical properties and FTIR studies of fluorine doped SnO2 films deposited by spray pyrolysis,” J. Mater. Sci. 46(6), 1884–1889 (2011). [CrossRef]
  22. W. M. Hlaing Oo, S. Tabatabaei, M. D. McCluskey, J. B. Varley, A. Janotti, and C. G. Van de Walle, “Hydrogen donors in SnO2 studied by infrared spectroscopy and first-principles calculations,” Phys. Rev. B 82(19), 193201 (2010). [CrossRef]
  23. J. R. Vig, “UV/ozone cleaning of surfaces,” J. Vac. Sci. Technol. A 3(3), 1027–1034 (1985). [CrossRef]
  24. R. Delhez, Th. H. de Keijser, and E. J. Mittemeijer, “Determination of crystallite size and lattice distortions through X-ray diffraction line profile analysis,” Fresenius Z. Anal. Chem. 312(1), 1–16 (1982). [CrossRef]
  25. B. E. Warren, X-Ray Diffraction (Addison Wesley, 1969).
  26. M. Leoni, J. Martinez-Garcia, and P. Scardi, “Dislocation effects in powder diffraction,” J. Appl. Cryst. 40(4), 719–724 (2007). [CrossRef]
  27. C. V. Thompson, “Structure evolution during processing of polycrystalline films,” Annu. Rev. Mater. Sci. 30(1), 159–190 (2000). [CrossRef]
  28. R. Carel, C. V. Thompson, and H. J. Frost, “Computer simulation of strain energy effects vs. surface and interface energy effects on grain growth in thin films,” Acta Mater. 44(6), 2479–2494 (1996). [CrossRef]
  29. J. G. Berryman, “Bounds and self-consistent estimates for elastic constants of random polycrystals with hexagonal, trigonal, and tetragonal symmetries,” J. Mech. Phys. Solids 53(10), 2141–2173 (2005). [CrossRef]
  30. V. Consonni, G. Feuillet, and P. Gergaud, “The flow stress in polycrystalline films: Dimensional constraints and strengthening effects,” Acta Mater. 56(20), 6087–6096 (2008). [CrossRef]
  31. J. E. Dominguez, L. Fu, and X. Q. Pan, “Effects of crystal defects on the electrical properties in epitaxial tin dioxide thin films,” Appl. Phys. Lett. 81(27), 5168–5170 (2002). [CrossRef]
  32. W. Mao, B. Xiong, Y. Liu, and C. He, “Correlation between defects and conductivity of Sb-doped tin oxide thin films,” Appl. Phys. Lett. 103(3), 031915 (2013). [CrossRef]
  33. K. Liu, M. Sakurai, and M. Aono, “Controlling Semiconducting and Insulating States of SnO2 Reversibly by Stress and Voltage,” ACS Nano 6(8), 7209–7215 (2012). [CrossRef] [PubMed]
  34. N. Laidani, R. Bartali, G. Gottardi, M. Andrele, and P. Cheyssac, “Optical absorption parameters of amorphous carbon films from Forouhi-Bloomer and Tauc-Lorentz models: a comparative study,” J. Phys. Condens. Matter 20(015216), 1–8 (2008).
  35. A. I. Martinez and D. R. Acosta, “Effect of the fluorine content on the structural and electrical properties of SnO2 and ZnO–SnO2 thin films prepared by spray pyrolysis,” Thin Solid Films 483(1-2), 107–113 (2005). [CrossRef]
  36. C. Jacoboni, Theory of Electron Transport in Semiconductors, Springer Series in Solid-State Science, Vol. 165 (Springer, 2010).
  37. V. I. Kaydanov, T. J. Coutts, and D. L. Young, Studies of Band Structure and Free-Carrier Scattering in Transparent Conducting Oxides Based on Combined Measurements of Electron Transport Phenomena,” NREL/CP-520–29064 (2000).
  38. A. Oprea, E. Moretton, N. Barsan, W. J. Becker, J. Wollenstein, and U. Weimar, “Conduction model of SnO2 thin films based on conductance and Hall effect measurements,” J. Appl. Phys. 100, 033716 (2006). [CrossRef]
  39. H. M. Ng, D. Doppalapudi, T. D. Moustakas, N. G. Weimann, and L. F. Eastman, “The role of dislocation scattering in n-type GaN films,” Appl. Phys. Lett. 73(6), 821–823 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited