OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S3 — May. 5, 2014
  • pp: A633–A641

Optoelectrical characteristics of green light-emitting diodes containing thick InGaN wells with digitally grown InN/GaN

Chun-Ta Yu, Wei-Chih Lai, Cheng-Hsiung Yen, Hsu-Cheng Hsu, and Shoou-Jinn Chang  »View Author Affiliations


Optics Express, Vol. 22, Issue S3, pp. A633-A641 (2014)
http://dx.doi.org/10.1364/OE.22.00A633


View Full Text Article

Enhanced HTML    Acrobat PDF (2067 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Compared with conventionally grown thin InGaN wells, thick InGaN wells with digitally grown InN/GaN exhibit superior optical properties. The activation energy (48 meV) of thick InGaN wells (generated by digital InN/GaN growth from temperature-dependent integrated photoluminescence intensity) is larger than the activation energy (25 meV) of conventionally grown thin InGaN wells. Moreover, thick InGaN wells with digitally grown InN/GaN exhibit a smaller σ value (the degree of localization effects) of 19 meV than that of conventionally grown thin InGaN wells (23 meV). Compared with green light-emitting diodes (LEDs) with conventional thin InGaN wells, the improvement in 20-A/cm2 output power for LEDs containing thick InGaN wells with digitally grown InN/GaN is approximately 23%.

© 2014 Optical Society of America

OCIS Codes
(230.3670) Optical devices : Light-emitting diodes
(250.0250) Optoelectronics : Optoelectronics

ToC Category:
Light-Emitting Diodes

History
Original Manuscript: November 11, 2013
Revised Manuscript: December 27, 2013
Manuscript Accepted: February 25, 2014
Published: March 19, 2014

Citation
Chun-Ta Yu, Wei-Chih Lai, Cheng-Hsiung Yen, Hsu-Cheng Hsu, and Shoou-Jinn Chang, "Optoelectrical characteristics of green light-emitting diodes containing thick InGaN wells with digitally grown InN/GaN," Opt. Express 22, A633-A641 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-S3-A633


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGan/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett.64(13), 1687–1689 (1994). [CrossRef]
  2. S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu, and U. H. Liaw, “InGaN-GaN multiquantum-well blue and green light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron.8(2), 278–283 (2002). [CrossRef]
  3. S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen, and J. M. Tsai, “400-nm InGaN-GaN and InGaN-AlGaN multiquantum well light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron.8(4), 744–748 (2002). [CrossRef]
  4. S. Nakamura, N. Senoh, N. Iwasa, and S. I. Nagahama, “High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures,” Jpn. J. Appl. Phys. Part 234(7A), L797–L799 (1995).
  5. T. Mukai, S. Nagahama, M. Sano, T. Yanamoto, D. Morita, T. Mitani, Y. Narukawa, S. Yamamoto, I. Niki, M. Yamada, S. Sonobe, S. Shioji, K. Deguchi, T. Naitou, H. Tamaki, Y. Murazaki, and M. Kameshima, “Recent progress of nitride-based light emitting devices,” Phys. Status Solidi A200(1), 52–57 (2003). [CrossRef]
  6. J. K. Kim, T. Gessmann, E. F. Schubert, J. Q. Xi, H. Luo, J. Cho, C. Sone, and Y. Park, “GaInN light-emitting diode with conductive omnidirectional reflector having a low-refractive-index indium-tin oxide layer,” Appl. Phys. Lett.88(1), 013501 (2006). [CrossRef]
  7. Y.-L. Li, E. F. Schubert, J. W. Graff, A. Osinsky, and W. F. Schaff, “Low-resistance ohmic contacts to p-type GaN,” Appl. Phys. Lett.76(19), 2728–2730 (2000). [CrossRef]
  8. M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” IEEE J. Display Technol.3(2), 160–175 (2007). [CrossRef]
  9. J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photonics Rev.1(4), 307–333 (2007). [CrossRef]
  10. X. H. Wu, C. R. Elsass, A. Abare, M. Mack, S. Keller, P. M. Petroff, S. P. DenBaars, J. S. Speck, and S. J. Rosner, “Structural origin of V-defects and correlation with localized excitonic centers in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett.72(6), 692–694 (1998). [CrossRef]
  11. H. K. Cho, J. Y. Lee, G. M. Yang, and C. S. Kim, “Formation mechanism of V defects in the InGaN/GaN multiple quantum wells grown on GaN layers with low threading dislocation density,” Appl. Phys. Lett.79(2), 215–217 (2001). [CrossRef]
  12. N. Sharma, P. Thomas, D. Tricker, and C. Humphreys, “Chemical mapping and formation of V-defects in InGaN multiple quantum wells,” Appl. Phys. Lett.77(9), 1274–1277 (2000). [CrossRef]
  13. C. J. Sun, M. Zubair Anwar, Q. Chen, J. W. Yang, M. Asif Khan, M. S. Shur, A. D. Bykhovski, Z. Liliental-Weber, C. Kisielowski, M. Smith, J. Y. Lin, and H. X. Xiang, “Quantum shift of band-edge stimulated emission in InGaN–GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett.70(22), 2978–2980 (1997). [CrossRef]
  14. I. H. Kim, H. S. Park, Y. J. Park, and T. Kim, “Formation of V-shaped pits in InGaN/GaN multiquantum wells and bulk InGaN films,” Appl. Phys. Lett.73(12), 1634–1636 (1998). [CrossRef]
  15. Y. Chen, T. Takeuchi, H. Amano, I. Akasaki, N. Yamada, Y. Kaneko, and S. Y. Wang, “Pit formation in GaInN quantum wells,” Appl. Phys. Lett.72(6), 710–712 (1998). [CrossRef]
  16. S. J. Leem, M. H. Kim, J. Shin, Y. Choi, and J. Jeong, “The effects of In flow during growth interruption on the optical properties of InGaN multiple quantum wells grown by low pressure metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys. Part 240(4B), L371–L373 (2001).
  17. M. S. Kumar, J. Y. Park, Y. S. Lee, S. J. Chung, C.-H. Hong, and E.-K. Suh, “Improved internal quantum efficiency of green emitting InGaN/GaN multiple quantum wells by In preflow for InGaN well growth,” Jpn. J. Appl. Phys.47(2), 839–842 (2008). [CrossRef]
  18. H. C. Lin, R. S. Lin, and J. I. Chyi, “Enhancing the quantum efficiency of InGaN green light-emitting diodes by trimethylindium treatment,” Appl. Phys. Lett.92(16), 161113 (2008). [CrossRef]
  19. Y. J. Lee, Y. C. Chen, C. J. Lee, C. M. Cheng, S. W. Chen, and T. C. Lu, “Stable temperature characteristics and suppression of efficiency droop in InGaN Green light-emitting diodes using pre-TMIn flow treatment,” IEEE Photonics Technol. Lett.22(17), 1279–1281 (2010). [CrossRef]
  20. S. W. Feng, C. Y. Tsai, H. C. Wang, H. C. Lin, and J. I. Chyi, “Optical properties of InGaN/GaN multiple quantum wells with trimethylindium treatment during growth interruption,” J. Cryst. Growth325(1), 41–45 (2011). [CrossRef]
  21. J. P. Zhang, E. Kuokstis, Q. Fareed, H. Wang, J. W. Yang, G. Simin, M. Asif Khan, R. Gaska, and M. S. Shur, “Pulsed atomic layer epitaxy of quaternary AlInGaN layers,” Appl. Phys. Lett.79(7), 925–927 (2001). [CrossRef]
  22. S. Choi, H. J. Kim, J.-H. Ryou, and R. D. Dupuis, “Digitally alloyed modulated precursor flow epitaxial growth of AlxGa1−xN layers with AlN and AlyGa1−yN monolayers,” J. Cryst. Growth311(12), 3252–3256 (2009). [CrossRef]
  23. Y. H. Cho, F. Fedler, R. J. Hauenstein, G. H. Park, J. J. Song, S. Keller, U. K. Mishra, and S. P. Denbaars, “High resolution x-ray analysis of pseudomorphic InGaN/GaN multiple quantum wells: Influence of Si doping concentration,” J. Appl. Phys.85(5), 3006–3008 (1999). [CrossRef]
  24. Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica34(1), 149–154 (1967). [CrossRef]
  25. L. Viña, S. Logothetidis, and M. Cardona, “Temperature dependence of the dielectric function of germanium,” Phys. Rev. B30(4), 1979–1991 (1984). [CrossRef]
  26. P. G. Eliseev, P. Perlin, J. Lee, and M. Osinski, “Blue temperature-induced shift and band-tail emission in InGaN-based light sources,” Appl. Phys. Lett.71(5), 569–571 (1997). [CrossRef]
  27. S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, “Spontaneous emission of localized excitons in InGaN single and multiquantum well structures,” Appl. Phys. Lett.69(27), 4188–4190 (1996). [CrossRef]
  28. Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita, and S. Nakamura, “Role of self-formed InGaN quantum dots for exaction localization in the purple laser diode emitting at 420 nm,” Appl. Phys. Lett.70(8), 981–983 (1997). [CrossRef]
  29. F. B. Naranjo, M. A. Sánchez-García, F. Calle, E. Calleja, B. Jenichen, and K. H. Ploog, “Strong localization in InGaN layers with high In content grown by molecular-beam epitaxy,” Appl. Phys. Lett.80(2), 231–233 (2002). [CrossRef]
  30. M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys.86(7), 3721–3728 (1999). [CrossRef]
  31. E. Monroy, N. Gogneau, F. Enjalbert, F. Fossard, D. Jalabert, E. Bellet-Amalric, L. Si Dang, and B. Daudin, “Molecular-beam epitaxial growth and characterization of quaternary III–nitride compounds,” J. Appl. Phys.94(5), 3121–3127 (2003). [CrossRef]
  32. J. Abell and T. D. Moustakas, “The role of dislocations as nonradiative recombination centers in InGaN quantum wells,” Appl. Phys. Lett.92(9), 091901 (2008). [CrossRef]
  33. G. Chen, M. Craven, A. Kim, A. Munkholm, S. Watanabe, M. Camras, W. Götz, and F. Steranka, “Performance of high-power III-nitride light emitting diodes,” Phys. Status Solidi A205(5), 1086–1092 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited