OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S3 — May. 5, 2014
  • pp: A679–A685

InAs/GaAsSb quantum dot solar cells

Sabina Hatch, Jiang Wu, Kimberly Sablon, Phu Lam, Mingchu Tang, Qi Jiang, and Huiyun Liu  »View Author Affiliations


Optics Express, Vol. 22, Issue S3, pp. A679-A685 (2014)
http://dx.doi.org/10.1364/OE.22.00A679


View Full Text Article

Enhanced HTML    Acrobat PDF (1388 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The hybrid structure of GaAs/GaAsSb quantum well (QW)/InAs quantum dots solar cells (QDSCs) is analyzed using power-dependent and temperature-dependent photoluminescence. We demonstrate that placing the GaAsSb QW beneath the QDs forms type-II characteristics that initiate at 12% Sb composition. Current density-voltage measurements demonstrate a decrease in power efficiency with increasing Sb composition. This could be attributed to increased valence band potential in the GaAsSb QW that subsequently limits hole transportation in the QD region. To reduce the confinement energy barrier, a 2 nm GaAs wall is inserted between GaAsSb QW and InAs QDs, leading to a 23% improvement in power efficiency for QDSCs.

© 2014 Optical Society of America

OCIS Codes
(040.5350) Detectors : Photovoltaic
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(350.6050) Other areas of optics : Solar energy

ToC Category:
Photovoltaics

History
Original Manuscript: December 4, 2013
Revised Manuscript: January 16, 2014
Manuscript Accepted: February 4, 2014
Published: March 26, 2014

Citation
Sabina Hatch, Jiang Wu, Kimberly Sablon, Phu Lam, Mingchu Tang, Qi Jiang, and Huiyun Liu, "InAs/GaAsSb quantum dot solar cells," Opt. Express 22, A679-A685 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-S3-A679


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Luque and A. Martí, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett.78(26), 5014–5017 (1997). [CrossRef]
  2. G. Jolley, H. Lu, L. Fu, H. Tan, and C. Jagadish, “Electron-hole recombination properties of In0.5Ga0.5As/GaAs quantum dot solar cells and the influence on the open circuit voltage,” Appl. Phys. Lett.97(12), 123505 (2010). [CrossRef]
  3. A. Luque and A. Marti, “On the partial filling of the intermediate band in IB solar cells,” IEEE Trans. Electron. Dev.57(6), 1201–1207 (2010). [CrossRef]
  4. F. K. Tutu, I. R. Sellers, M. G. Peinado, C. E. Pastore, S. M. Willis, A. R. Watt, T. Wang, and H. Y. Liu, “Improved performance of multilayer InAs/GaAs quantum-dot solar cells using a high-growth-temperature GaAs spacer layer,” J. Appl. Phys.111(4), 046101 (2012). [CrossRef]
  5. A. Martí, N. López, E. Antolín, E. Cánovas, A. Luque, C. R. Stanley, C. D. Farmer, and P. Díaz, “Emitter degradation in quantum dot intermediate band solar cells,” Appl. Phys. Lett.90(23), 233510 (2007). [CrossRef]
  6. T. Sugaya, Y. Kamikawa, S. Furue, T. Amano, M. Mori, and S. Niki, “Multi-stacked quantum dot solar cells fabricated by intermittent deposition of InGaAs,” Sol. Energy Mater. Sol. Cells95(1), 163–166 (2011). [CrossRef]
  7. H. Liu, I. Sellers, T. Badcock, D. Mowbray, M. Skolnick, K. Groom, M. Gutierrez, M. Hopkinson, J. Ng, J. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high growth temperature GaAs spacer layer,” Appl. Phys. Lett.85(5), 704–706 (2004). [CrossRef]
  8. K. Ban, W. Hong, S. Bremner, S. Dahal, H. McFelea, and C. Honsberg, “Controllability of the subband occupation of InAs quantum dots on a delta-doped GaAsSb barrier,” J. Appl. Phys.109(1), 014312 (2011). [CrossRef]
  9. W. S. Liu, H. M. Wu, Y. A. Liao, J. I. Chyi, W. Y. Chen, and T. M. Hsu, “High optical property vertically aligned InAs quantum dot structures with GaAsSb overgrown layers,” J. Cryst. Growth323(1), 164–166 (2011). [CrossRef]
  10. S. P. Bremner, K.-Y. Ban, N. N. Faleev, C. B. Honsberg, and D. J. Smith, “Impact of stress relaxation in GaAsSb cladding layers on quantum dot creation in InAs/GaAsSb structures grown on GaAs (001),” J. Appl. Phys.114(10), 103511 (2013). [CrossRef]
  11. W. S. Liu, Y. T. Wang, W. Y. Qiu, and C. Fang, “Carrier dynamics of a type-II vertically aligned InAs quantum dot structure with a GaAsSb strain-reducing layer,” Appl. Phys. Express6(8), 085001 (2013). [CrossRef]
  12. S. Tomic, “Effect of Sb induced type II alignment on dynamical processes in InAs-/GaAs/GaAsSb quantum dots: Implication to solar cell design,” Appl. Phys. Lett.103(7), 072112 (2013). [CrossRef]
  13. R. B. Laghumavarapu, B. L. Liang, Z. S. Bittner, T. S. Navruz, S. M. Hubbard, A. Norman, and D. L. Huffaker, “GaSb/InGaAs quantum dot–well hybrid structure active regions in solar cells,” Sol. Energy Mater. Sol. Cells114, 165–171 (2013). [CrossRef]
  14. H. Liu, M. J. Steer, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, P. Navaretti, K. M. Groom, M. Hopkinson, and R. A. Hogg, “Long-wavelength light emission and lasing from InAs/GaAs quantum dots covered by a GaAsSb strain-reducing layer,” Appl. Phys. Lett.86(14), 143108 (2005). [CrossRef]
  15. K. Y. Ban, D. Kuciauskas, S. P. Bremner, and C. B. Honsberg, “Observation of band alignment transition in InAs/GaAsSb quantum dots by photoluminescence,” J. Appl. Phys.111(10), 104302 (2012). [CrossRef]
  16. H. Liu, S. Liew, T. Badcock, D. Mowbray, M. Skolnick, S. Ray, T. Choi, K. Groom, B. Stevens, F. Hasullah, C. Jin, M. Hopkinson, and R. Hogg, “p-doped 1.3 m InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett.89, 073113 (2006).
  17. H. Liu, I. Sellers, M. Gutierrez, K. Groom, W. Soong, M. Hopkinson, J. David, R. Beanland, T. Badcock, D. Mowbray, and M. Skolnick, “Influences of the spacer layer growth temperature on multilayer InAs/GaAs quantum dot structures,” J. Appl. Phys.96(4), 1988–1992 (2004). [CrossRef]
  18. F. K. Tutu, J. Wu, P. Lam, M. Tang, N. Miyashita, Y. Okada, J. Wilson, R. Allison, and H. Liu, “Antimony mediated growth of high-density InAs quantum dots for photovoltaic cells,” Appl. Phys. Lett.103(4), 043901 (2013). [CrossRef]
  19. W. H. Chang, Y. A. Liao, W. T. Hsu, M. C. Lee, P. C. Chiu, and J. I. Chyi, “Carrier dynamics of type-II InAs/ GaAs quantum dots covered by a thin GaAsSb layer,” Appl. Phys. Lett.93(3), 033107 (2008). [CrossRef]
  20. S. M. Hubbard, C. D. Cress, C. G. Bailey, R. P. Raffaelle, S. G. Bailey, and D. M. Wilt, “Effect of strain compensation on quantum dot enhanced GaAs solar cells,” Appl. Phys. Lett.92(12), 123512 (2008). [CrossRef]
  21. W. S. Liu, H. M. Wu, F. H. Tsao, T. L. Hsu, and J. I. Chyi, “Improving the characteristics of intermediate-band solar cell devices using a vertically aligned InAs/GaAsSb quantum dot structure,” Sol. Energy Mater. Sol. Cells105, 237–241 (2012). [CrossRef]
  22. S. Willis, J. Dimmock, F. Tutu, H. Liu, M. Peinado, H. Assender, A. Watt, and I. Sellers, “Defect mediated extraction in InAs/GaAs quantum dot solar cells,” Sol. Energy Mater. Sol. Cells102, 142–147 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited