OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S3 — May. 5, 2014
  • pp: A735–A741

Broadband down-conversion for silicon solar cell by ZnSe/phosphor heterostructure

Xiaojie Wu, Fanzhi Meng, Zhenzhong Zhang, Yingning Yu, Xiaojuan Liu, and Jian Meng  »View Author Affiliations

Optics Express, Vol. 22, Issue S3, pp. A735-A741 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1652 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Down-conversion is a feasible way to improve conversion efficiency of silicon solar cell. However, the width of excitation band for down-converter based on trivalent lanthanide ions is still not satisfying. Here, we designed and fabricated a heterostructural down-converter composed of Y2O3: [(Tb3+-Yb3+), Li+] quantum cutting phosphor and ZnSe. The ZnSe phase was used to absorb the incident light with energy larger than its bandgap, and transfer the energy to Tb3+-Yb3+ quantum cutting couple. Short-wavelength incident light was finally converted into a strong Yb3+ emission at about 1000 nm, locating at the maximal spectral response of silicon solar cell. The excitation band of the down-conversion covers a wide region of 250-550 nm. Benefiting from the energy match between ZnSe bandgap and 7F65D4 absorption of Tb3+ ions, the bandwidth of down-conversion is almost maximized.

© 2014 Optical Society of America

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(160.5690) Materials : Rare-earth-doped materials
(160.6000) Materials : Semiconductor materials
(350.6050) Other areas of optics : Solar energy

ToC Category:
Fluorescent and Luminescent Materials

Original Manuscript: November 19, 2013
Revised Manuscript: February 11, 2014
Manuscript Accepted: February 20, 2014
Published: April 1, 2014

Xiaojie Wu, Fanzhi Meng, Zhenzhong Zhang, Yingning Yu, Xiaojuan Liu, and Jian Meng, "Broadband down-conversion for silicon solar cell by ZnSe/phosphor heterostructure," Opt. Express 22, A735-A741 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, “Visible quantum cutting in LiGdF4:Eu3+ through downconversion,” Science 283(5402), 663–666 (1999). [CrossRef] [PubMed]
  2. C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. Del Canizo, and I. Tobiasd, “Modifying the solar spectrum to enhance silicon solar cell efficiency-An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007). [CrossRef]
  3. B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009). [CrossRef] [PubMed]
  4. T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92(3), 1668 (2002). [CrossRef]
  5. B. Fan, C. Chlique, O. Merdrignac-Conanec, X. Zhang, and X. Fan, “Near-infrared quantum cutting material Er3+/Yb3+ doped La2O2S with an external quantum yield higher than 100%,” J. Phys. Chem. C 116(21), 11652–11657 (2012). [CrossRef]
  6. X. Y. Huang, S. Y. Han, W. Huang, and X. G. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev. 42(1), 173–201 (2012). [CrossRef] [PubMed]
  7. B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21(30), 3073–3077 (2009). [CrossRef]
  8. P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. Vander Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+,” Phys. Rev. B 71(1), 014119 (2005). [CrossRef]
  9. D. L. Dexter, “Possibility of luminescent quantum yields greater than unity,” Phys. Rev. 108(3), 630–633 (1957). [CrossRef]
  10. Q. H. Zhang, J. Wang, G. G. Zhang, and Q. Su, “UV photon harvesting and enhanced near-infrared emission in novel quantum cutting Ca2BO3Cl:Ce3+, Tb3+, Yb3+ phosphor,” J. Mater. Chem. 19(38), 7088 (2009). [CrossRef]
  11. Y. Chen, J. Wang, C. M. Liu, J. K. Tang, X. J. Kuang, M. M. Wu, and Q. Su, “UV-Vis-NIR luminescence properties and energy transfer mechanism of LiSrPO4:Eu2+, Pr3+ suitable for solar spectral convertor,” Opt. Express 21(3), 3161–3169 (2013). [CrossRef] [PubMed]
  12. Z. H. Bai, M. Fujii, T. Hasegawa, K. Imakita, M. Mizuhata, and S. Hayashi, “Efficient ultraviolet-blue to near-infrared downconversion in Bi–Dy–Yb-doped zeolites,” J. Phys. D Appl. Phys. 44(45), 455301 (2011). [CrossRef]
  13. R. Martín-Rodríguez, R. Geitenbeek, and A. Meijerink, “Incorporation and luminescence of Yb3+ in CdSe nanocrystals,” J. Am. Chem. Soc. 135(37), 13668–13671 (2013). [CrossRef] [PubMed]
  14. Q. Luo, X. S. Qiao, X. P. Fan, and X. H. Zhang, “Near-infrared emission of Yb3+ through energy transfer from ZnO to Yb3+ in glass ceramic containing ZnO nanocrystals,” Opt. Lett. 36(15), 2767–2769 (2011). [CrossRef] [PubMed]
  15. F. Xiao, R. Chen, Y. Q. Shen, Z. L. Dong, H. H. Wang, Q. Y. Zhang, and H. D. Sun, “Efficient energy transfer and enhanced infrared emission in Er-doped ZnO-SiO2 composites,” J. Phys. Chem. C 116(24), 13458–13462 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited