OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S3 — May. 5, 2014
  • pp: A818–A832

Time domain simulation of tandem silicon solar cells with optimal textured light trapping enabled by the quadratic complex rational function

H. Chung, K-Y. Jung, X. T. Tee, and P. Bermel  »View Author Affiliations

Optics Express, Vol. 22, Issue S3, pp. A818-A832 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (8297 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Amorphous silicon/crystalline silicon (a-Si/c-Si) micromorph tandem cells, with best confirmed efficiency of 12.3%, have yet to fully approach their theoretical performance limits. In this work, we consider a strategy for improving the light trapping and charge collection of a-Si/c-Si micromorph tandem cells using random texturing with adjustable short-range correlations and long-range periodicity. In order to consider the full-spectrum absorption of a-Si and c-Si, a novel dispersion model known as a quadratic complex rational function (QCRF) is applied to photovoltaic materials (e.g., a-Si, c-Si and silver). It has the advantage of accurately modeling experimental semiconductor dielectric values over the entire relevant solar bandwidth from 300—1000 nm in a single simulation. This wide-band dispersion model is then used to model a silicon tandem cell stack (ITO/a-Si:H/c-Si:H/silver), as two parameters are varied: maximum texturing height h and correlation parameter f. Even without any other light trapping methods, our front texturing method demonstrates 12.37% stabilized cell efficiency and 12.79 mA/cm2 in a 2 μm-thick active layer.

© 2014 Optical Society of America

OCIS Codes
(350.6050) Other areas of optics : Solar energy
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Light Trapping for Photovoltaics

Original Manuscript: March 4, 2014
Revised Manuscript: March 25, 2014
Manuscript Accepted: March 25, 2014
Published: April 10, 2014

H. Chung, K-Y. Jung, X. T. Tee, and P. Bermel, "Time domain simulation of tandem silicon solar cells with optimal textured light trapping enabled by the quadratic complex rational function," Opt. Express 22, A818-A832 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Margolis, ed. SunShot vision study (U.S. Department of Energy, 2012).
  2. N.S. Lewis, “Toward Cost-Effective Solar Energy Use,” Science 315, 798–801 (2007). [CrossRef] [PubMed]
  3. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Optics Express 15, 16986–17000 (2007). [CrossRef] [PubMed]
  4. A. G. Aberle, “Thin-film solar cells,” Thin Solid Films 517, 4706–4710 (2009). [CrossRef]
  5. J. G. Mutitu, S. Shi, C. Chen, T. Creazzo, A. Barnett, C. Honsberg, and D. W. Prather, “Thin film solar cell design based on photonic crystal and diffractive grating structures,” Optics Express 16, 15238–15248 (2008). [CrossRef] [PubMed]
  6. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, and E.D. Dunlop, “Solar cell efficiency tables (version 43),” Prog. Photovolt.: Res. Appl. 21, 1–9 (2013). [CrossRef]
  7. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” Journal of applied physics 32, 510–519 (1961). [CrossRef]
  8. A. De Vos, “Detailed balance limit of the efficiency of tandem solar cells,” J. Phys. D 13, 839–845 (1980).
  9. O. D. Miller, E. Yablonovitch, and S. R. Kurtz, “Strong internal and external luminescence as solar cells approach the shockley-queisser limit,” IEEE J. Photovolt. 2, 303–311 (2012). [CrossRef]
  10. M. Berginski, J. Hupkes, M. Schulte, G. Schope, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front zno: Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” Journal of Applied Physics 101, 074903 (2007). [CrossRef]
  11. R. Brendel, M. Hirsch, R. Plieninger, and J. Werner, “Quantum efficiency analysis of thin-layer silicon solar cells with back surface fields and optical confinement,” IEEE Transactions on Electron Devices 43, 1104–1113 (1996). [CrossRef]
  12. T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Transactions on Electron Devices 31, 711–716 (1984). [CrossRef]
  13. E. Yablonovitch, “Statistical ray optics,” JOSA 72, 899–907 (1982). [CrossRef]
  14. M. Ghebrebrhan, P. Bermel, Y. Avniel, J. D. Joannopoulos, and S. G. Johnson, “Global optimization of silicon photovoltaic cell front coatings,” Optics express 17, 7505–7518 (2009). [CrossRef] [PubMed]
  15. J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient honeycomb textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Applied Physics Letters 73, 1991 (1998). [CrossRef]
  16. R. Dewan, I. Vasilev, V. Jovanov, and D. Knipp, “Optical enhancement and losses of pyramid textured thin-film silicon solar cells,” Journal of Applied Physics 110, 013101 (2011). [CrossRef]
  17. C. L. Tan, A. Karar, K. Alameh, and Y. T. Lee, “Optical absorption enhancement of hybrid-plasmonic-based metal-semiconductor-metal photodetector incorporating metal nanogratings and embedded metal nanoparticles,” Optics express 21, 1713–1725 (2013). [CrossRef] [PubMed]
  18. C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F.-J. Haug, T. Söderström, C. Ballif, and F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Optics express 18, A335–A341 (2010). [CrossRef] [PubMed]
  19. S.-S. Lo, C.-C. Chen, F. Garwe, and T. Pertch, “Broad-band anti-reflection coupler for a: Si thin-film solar cell,” Journal of Physics D: Applied Physics 40, 754 (2007). [CrossRef]
  20. J. Lacombe, O. Sergeev, K. Chakanga, K. von Maydell, and C. Agert, “Three dimensional optical modeling of amorphous silicon thin film solar cells using the finite-difference time-domain method including real randomly surface topographies,” Journal of Applied Physics 110, 023102 (2011). [CrossRef]
  21. Y.-C. Tsao, C. Fisker, and T. Garm Pedersen, “Optical absorption of amorphous silicon on anodized aluminum substrates for solar cell applications,” Optics Communications 315, 17–25 (2014). [CrossRef]
  22. V. Jovanov, U. Palanchoke, P. Magnus, H. Stiebig, J. Hüpkes, P. Sichanugrist, M. Konagai, S. Wiesendanger, C. Rockstuhl, and D. Knipp, “Light trapping in periodically textured amorphous silicon thin film solar cells using realistic interface morphologies,” Optics Express 21, A595–A606 (2013). [CrossRef] [PubMed]
  23. A. Tavlove and S. C. Hagness, “Computational electrodynamics: the finite-difference time-domain method,” 2, Artech House, (Artech House, 2000).
  24. W. C. Chew, Waves and fields in inhomogenous media (Van Nostrand Reinhold, 1990).
  25. G. Jellison and F. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Applied Physics Letters 69, 371–373 (1996). [CrossRef]
  26. A. Fantoni and P. Pinho, “FDTD simulation of light propagation inside a-si: H structures,” in “ MRS Proceedings (Cambridge University, 2010). [CrossRef]
  27. S.-G. Ha, J. Cho, J. Choi, H. Kim, and K.-Y. Jung, “FDTD dispersive modeling of human tissues based on quadratic complex rational function,” IEEE Transactions on Antennas and Propagation 61, 996–999 (2013). [CrossRef]
  28. H. Chung, J. Cho, S.-G. Ha, S. Ju, and K.-Y. Jung, “Accurate FDTD dispersive modeling for concrete materials.” ETRI Journal 35, 915–918, (2013). [CrossRef]
  29. H. Chung, S.-G. Ha, J. Cho, and K.-Y. Jung, “Accurate FDTD modeling for dispersive media using rational function and particle swarm optimization.” International Journal of Electronics to be published (2014).
  30. K. Yamamoto, A. Nakajima, M. Yoshimi, T. Sawada, S. Fukuda, T. Suezaki, M. Ichikawa, Y. Koi, M. Goto, H. Takata, T. Sasaki, and Y. Tawada, “Novel hybrid thin film silicon solar cell and module,” in Proceedings of 3rd World Conference on Photovoltaic Energy Conversion (IEEE, 2003), vol. 3, pp. 2789–2792.
  31. F. L. Teixeira, “Time-domain finite-difference and finite-element methods for maxwell equations in complex media,” IEEE Transactions on Antennas and Propagation 56, 2150–2166 (2008). [CrossRef]
  32. C. Herzinger, B. Johs, W. McGahan, J. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” Journal of Applied Physics 83, 3323–3336 (1998). [CrossRef]
  33. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the fdtd method,” Computer Physics Communications 181, 687–702 (2010). [CrossRef]
  34. E. L. Haines and A. B. Whitehead, “Pulse height defect and energy dispersion in semiconductor detectors,” Review of Scientific Instruments 37, 190–194 (1966). [CrossRef]
  35. R. Collins, A. Ferlauto, G. Ferreira, C. Chen, J. Koh, R. Koval, Y. Lee, J. Pearce, and C. Wronski, “Evolution of microstructure and phase in amorphous, protocrystalline, and microcrystalline silicon studied by real time spectroscopic ellipsometry,” Solar Energy Materials and Solar Cells 78, 143–180 (2003). [CrossRef]
  36. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
  37. S. J. Orfanidis, Electromagnetic waves and antennas (Rutgers University, 2002).
  38. L. T. Varghese, Y. Xuan, B. Niu, L. Fan, P. Bermel, and M. Qi, “Enhanced photon management of thin-film silicon solar cells using inverse opal photonic crystals with 3d photonic bandgaps,” Advanced Optical Materials 1, 692–698 (2013). [CrossRef]
  39. S. Wiesendanger, M. Zilk, T. Pertsch, F. Lederer, and C. Rockstuhl, “A path to implement optimized randomly textured surfaces for solar cells,” Applied Physics Letters 103, 131115 (2013). [CrossRef]
  40. M. J. Keevers, T. L. Young, U. Schubert, and M. A. Green, “10% efficient CSG minimodules,” Proceedings of the 22nd European Photovoltaic Solar Energy Conference and Exhibition, Milan (2007).
  41. Z. Yu, A. Raman, and S. Fan, “Nanophotonic light-trapping theory for solar cells,” Applied Physics A 105, 329–339 (2011). [CrossRef]
  42. Z. Yu, A. Raman, and S. Fan, “Thermodynamic upper bound on broadband light coupling with photonic structures,” Physical review letters 109, 173901 (2012). [CrossRef] [PubMed]
  43. J. L. Gray, X. Wang, X. Sun, and J. R. Wilcox, “Adept 2.0,” (2011).
  44. A. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3d photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” physica status solidi (a) 205, 2796–2810 (2008). [CrossRef]
  45. J. Üpping, A. Bielawny, R. B. Wehrspohn, T. Beckers, R. Carius, U. Rau, S. Fahr, C. Rockstuhl, F. Lederer, M. Kroll, T. Pertsch, L. Steidl, and R. Zentel, “Three-dimensional photonic crystal intermediate reflectors for enhanced light-trapping in tandem solar cells,” Advanced Materials 23, 3896–3900 (2011). [CrossRef] [PubMed]
  46. D. Madzharov, R. Dewan, and D. Knipp, “Influence of front and back grating on light trapping in microcrystalline thin-film silicon solar cells,” Optics express 19, A95–A107 (2011). [CrossRef] [PubMed]
  47. H. Sai, H. Fujiwara, M. Kondo, and Y. Kanamori, “Enhancement of light trapping in thin-film hydrogenated microcrystalline si solar cells using back reflectors with self-ordered dimple pattern,” Applied Physics Letters 93, 143501 (2008). [CrossRef]
  48. K. Yamamoto, A. Nakajima, M. Yoshimi, T. Sawada, S. Fukuda, T. Suezaki, M. Ichikawa, Y. Koi, M. Goto, T. Meguro, T. Matsuda, M. Kondo, T. Sasaki, and Y. Tawada, “A high efficiency thin film silicon solar cell and module,” Solar Energy 77, 939–949 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited