OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S3 — May. 5, 2014
  • pp: A867–A879

Enhanced power conversion efficiency of quantum dot sensitized solar cells with near single-crystalline TiO2 nanohelixes used as photoanodes

Seung Hee Lee, Ho Jin, Dong-Yeong Kim, Kyung Song, Sang Ho Oh, Sungjee Kim, E. Fred Schubert, and Jong Kyu Kim  »View Author Affiliations

Optics Express, Vol. 22, Issue S3, pp. A867-A879 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2112 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Photo-electrodes with tailored three-dimensional nanostructures offer a large enhancement in light harvesting capability for various optoelectronic devices enabled by strong light scattering in the nanostructures as well as improved charge transport. Here we present an array of three-dimensional titanium dioxide (TiO2) nanohelixes fabricated by the oblique angle deposition method as a multifunctional photoanode for CdSe quantum dot sensitized solar cells (QDSSCs). The CdSe QDSSC with a TiO2 nanohelix photoanode shows a 100% higher power conversion efficiency despite less light being absorbed in CdSe QDs when compared with a conventional TiO2 nanoparticle photoanode. We attribute the higher power conversion efficiency to strong light scattering by the TiO2 nanohelixes and much enhanced transport and collection of photo-generated carriers enabled by the unique geometry and near-single crystallinity of the TiO2 nanohelix structure.

© 2014 Optical Society of America

OCIS Codes
(230.0230) Optical devices : Optical devices
(230.0250) Optical devices : Optoelectronics

ToC Category:

Original Manuscript: January 28, 2014
Revised Manuscript: March 31, 2014
Manuscript Accepted: March 31, 2014
Published: April 11, 2014

Seung Hee Lee, Ho Jin, Dong-Yeong Kim, Kyung Song, Sang Ho Oh, Sungjee Kim, E. Fred Schubert, and Jong Kyu Kim, "Enhanced power conversion efficiency of quantum dot sensitized solar cells with near single-crystalline TiO2 nanohelixes used as photoanodes," Opt. Express 22, A867-A879 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature353(6346), 737–740 (1991). [CrossRef]
  2. N. Tétreault and M. Grätzel, “Novel nanostructures for next generation dye-sensitized solar cells,” Energy Environ. Sci.5(9), 8506–8516 (2012). [CrossRef]
  3. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, “Dye-sensitized solar cells,” Chem. Rev.110(11), 6595–6663 (2010). [CrossRef] [PubMed]
  4. M. Grätzel, “Solar energy conversion by dye-sensitized photovoltaic cells,” Inorg. Chem.44(20), 6841–6851 (2005). [CrossRef] [PubMed]
  5. F. Pichot, J. Pitts, and B. Gregg, “Low-temperature sintering of TiO2 colloids: Application to flexible dye-sensitized solar cells,” Langmuir16(13), 5626–5630 (2000). [CrossRef]
  6. A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science271(5251), 933–937 (1996). [CrossRef]
  7. W. W. Yu, L. H. Qu, W. Z. Guo, and X. G. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater.15(14), 2854–2860 (2003). [CrossRef]
  8. L. Brus, “Electronic wave functions in semiconductor clusters: Experiment and theory,” J. Phys. Chem.90(12), 2555–2560 (1986). [CrossRef]
  9. Q. Shen, A. Yamada, S. Tamura, and T. Toyoda, “CdSe quantum dot-sensitized solar cell employing TiO2 nanotube working-electrode and Cu2S counter-electrode,” Appl. Phys. Lett.97(12), 123107 (2010). [CrossRef]
  10. A. J. Nozik, “Quantum dot solar cells,” Physica E14(1–2), 115–120 (2002). [CrossRef]
  11. M. C. Hanna and A. J. Nozik, “Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers,” J. Appl. Phys.100(7), 074510 (2006). [CrossRef]
  12. P. V. Kamat, “Quantum dot solar cells. Semiconductor nanocrystals as light harvesters,” J. Phys. Chem. C112(48), 18737–18753 (2008). [CrossRef]
  13. V. González-Pedro, X. Xu, I. Mora-Seró, and J. Bisquert, “Modeling high-efficiency quantum dot sensitized solar cells,” ACS Nano4(10), 5783–5790 (2010). [CrossRef] [PubMed]
  14. J.-W. Lee, D.-Y. Son, T. K. Ahn, H.-W. Shin, I. Y. Kim, S.-J. Hwang, M. J. Ko, S. Sul, H. Han, and N.-G. Park, “Quantum-dot-sensitized solar cell with unprecedentedly high photocurrent,” Sci. Rep.3, 1050–1057 (2013). [CrossRef] [PubMed]
  15. P. K. Santra and P. V. Kamat, “Mn-doped quantum dot sensitized solar cells: A strategy to boost efficiency over 5%,” J. Am. Chem. Soc.134(5), 2508–2511 (2012). [CrossRef] [PubMed]
  16. Q. Zhang and G. Cao, “Nanostructured photoelectrodes for dye-sensitized solar cells,” Nano Today6(1), 91–109 (2011). [CrossRef]
  17. Q. Zhang, D. Myers, J. Lan, S. A. Jenekhe, and G. Cao, “Applications of light scattering in dye-sensitized solar cells,” Phys. Chem. Chem. Phys.14(43), 14982–14998 (2012). [CrossRef] [PubMed]
  18. K. D. Benkstein, N. Kopidakis, J. van de Lagemaat, and A. J. Frank, “Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells,” J. Phys. Chem. B107(31), 7759–7767 (2003). [CrossRef]
  19. K. Zhu, T. B. Vinzant, N. R. Neale, and A. J. Frank, “Removing structural disorder from oriented TiO2 nanotube arrays: Reducing the dimensionality of transport and recombination in dye-sensitized solar cells,” Nano Lett.7(12), 3739–3746 (2007). [CrossRef] [PubMed]
  20. S. H. Kang, S. H. Choi, M. S. Kang, J. Y. Kim, H. S. Kim, T. Hyeon, and Y. E. Sung, “Nanorod-based dye-sensitized solar cells with improved charge collection efficiency,” Adv. Mater.20(1), 54–58 (2008). [CrossRef]
  21. J. Nelson, “Continuous-time random-walk model of electron transport in nanocrystalline TiO2 electrodes,” Phys. Rev. B59(23), 15374–15380 (1999). [CrossRef]
  22. J. van de Lagemaat, N.-G. Park, and A. J. Frank, “Influence of electrical potential distribution, charge transport, and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrystallne TiO2 solar cells: A study by electrical impedance and optical modulation techniques,” J. Phys. Chem. B104(9), 2044–2052 (2000). [CrossRef]
  23. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater.4(6), 455–459 (2005). [CrossRef] [PubMed]
  24. X. Feng, K. Zhu, A. J. Frank, C. A. Grimes, and T. E. Mallouk, “Rapid charge transport in dye-sensitized solar cells made from vertically aligned single-crystal rutile TiO2 nanowires,” Angew. Chem.124(11), 2781–2784 (2012). [CrossRef]
  25. X. Feng, K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa, and C. A. Grimes, “Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: Synthesis details and applications,” Nano Lett.8(11), 3781–3786 (2008). [CrossRef] [PubMed]
  26. J. B. Baxter and E. S. Aydil, “Nanowire-based dye-sensitized solar cells,” Appl. Phys. Lett.86(5), 053114 (2005). [CrossRef]
  27. J. Zhou, B. Song, G. Zhao, W. Dong, and G. Han, “TiO2 nanorod arrays sensitized with CdS quantum dots for solar cell applications: Effects of rod geometry on photoelectrochemical performance,” Appl. Phys., A Mater. Sci. Process.107(2), 321–331 (2012). [CrossRef]
  28. B. Liu and E. S. Aydil, “Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells,” J. Am. Chem. Soc.131(11), 3985–3990 (2009). [CrossRef] [PubMed]
  29. E. Galoppini, J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldt, and G. Boschloo, “Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells,” J. Phys. Chem. B110(33), 16159–16161 (2006). [CrossRef] [PubMed]
  30. M. Wang, J. Bai, F. Le Formal, S.-J. Moon, L. Cevey-Ha, R. Humphry-Baker, C. Grätzel, S. M. Zakeeruddin, and M. Grätzel, “Solid-state dye-sensitized solar cells using ordered TiO2 nanorods on transparent conductive oxide as photoanodes,” J. Phys. Chem. C116(5), 3266–3273 (2012). [CrossRef]
  31. K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, “Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays,” Nano Lett.7(1), 69–74 (2007). [CrossRef] [PubMed]
  32. G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells,” Nano Lett.6(2), 215–218 (2006). [CrossRef] [PubMed]
  33. areS. Lee, I. J. Park, D. H. Kim, W. M. Seong, D. W. Kim, G. S. Han, J. Y. Kim, H. S. Jung, and K. S. Hong, “Crystallographically preferred oriented TiO2 nanotube arrays for efficient photovoltaic energy conversion,” Energy Environ. Sci.5(7), 7989–7995 (2012). [CrossRef]
  34. A. B. F. Martinson, J. W. Elam, J. T. Hupp, and M. J. Pellin, “ZnO nanotube based dye-sensitized solar cells,” Nano Lett.7(8), 2183–2187 (2007). [CrossRef] [PubMed]
  35. R. Mohammadpour, A. Iraji Zad, A. Hagfeldt, and G. Boschloo, “Comparison of trap-state distribution and carrier transport in nanotubular and nanoparticulate TiO2 electrodes for dye-sensitized solar cells,” ChemPhysChem11(10), 2140–2145 (2010). [CrossRef] [PubMed]
  36. M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto, and F. Wang, “Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the “oriented attachment” mechanism,” J. Am. Chem. Soc.126(45), 14943–14949 (2004). [CrossRef] [PubMed]
  37. Y. Q. Wang, Y. M. Sun, and K. Li, “Dye-sensitized solar cells based on oriented ZnO nanowire-covered TiO2 nanoparticle composite film electrodes,” Mater. Lett.63(12), 1102–1104 (2009). [CrossRef]
  38. C. H. Ku and J. J. Wu, “Electron transport properties in ZnO nanowire array/nanoparticle composite dye-sensitized solar cells,” Appl. Phys. Lett.91(9), 093117 (2007). [CrossRef]
  39. S. Yodyingyong, Q. F. Zhang, K. Park, C. S. Dandeneau, X. Y. Zhou, D. Triampo, and G. Z. Cao, “ZnO nanoparticles and nanowire array hybrid photoanodes for dye-sensitized solar cells,” Appl. Phys. Lett.96(7), 073115 (2010). [CrossRef]
  40. W. Peng, M. Yanagida, L. Han, and S. Ahmed, “Controlled fabrication of TiO2 rutile nanorod/anatase nanoparticle composite photoanodes for dye-sensitized solar cell application,” Nanotechnology22(27), 275709 (2011). [CrossRef] [PubMed]
  41. Q. Zheng, H. Kang, J. Yun, J. Lee, J. H. Park, and S. Baik, “Hierarchical construction of self-standing anodized titania nanotube arrays and nanoparticles for efficient and cost-effective front-illuminated dye-sensitized solar cells,” ACS Nano5(6), 5088–5093 (2011). [CrossRef] [PubMed]
  42. J. Nayak, K. Prabakar, J. W. Park, and H. Kim, “Effect of synthesis temperature on structure, optical and photovoltaic properties of TiO2 nanorod thin films,” Electrochim. Acta65, 44–49 (2012). [CrossRef]
  43. J. van de Lagemaat and A. J. Frank, “Nonthermalized electron transport in dye-sensitized nanocrystalline TiO2 films: Transient photocurrent and random-walk modeling studies,” J. Phys. Chem. B105(45), 11194–11205 (2001). [CrossRef]
  44. N.-G. Park, J. van de Lagemaat, and A. J. Frank, “Effect of morphology on electron transport in dye-sensitized nanostructured TiO2 films,” J. Photosci.10, 199–205 (2003).
  45. Z.-S. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, “Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell,” Coord. Chem. Rev.248(13–14), 1381–1389 (2004). [CrossRef]
  46. P. Sudhagar, J. H. Jung, S. Park, Y. G. Lee, R. Sathyamoorthy, Y. S. Kang, and H. Ahn, “The performance of coupled (CdS:CdSe) quantum dot-sensitized TiO2 nanofibrous solar cells,” Electrochem. Commun.11(11), 2220–2224 (2009). [CrossRef]
  47. M. M. Hawkeye and M. J. Brett, “Glancing angle deposition: Fabrication, properties, and applications of micro-and nanostructured thin films,” J. Vac. Sci. Technol. A25(5), 1317–1335 (2007). [CrossRef]
  48. K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: Growth mechanics and applications,” J. Vac. Sci. Technol. A15(3), 1460–1465 (1997). [CrossRef]
  49. K. D. Harris, A. Huizinga, and M. J. Brett, “High-speed porous thin film humidity sensors,” Electrochem. Solid State Lett.5(11), H27–H29 (2002). [CrossRef]
  50. G. K. Kiema and M. J. Brett, “Effect of thermal annealing on structural properties and electrochemical performance of carbon films with porous microstructures,” J. Electrochem. Soc.151(5), E194–E198 (2004). [CrossRef]
  51. B. Djurfors, J. N. Broughton, M. J. Brett, and D. G. Ivey, “Microstructural characterization of porous manganese thin films for electrochemical supercapacitor applications,” J. Mater. Sci.38(24), 4817–4830 (2003). [CrossRef]
  52. S. R. Kennedy, M. J. Brett, H. Miguez, O. Toader, and S. John, “Optical properties of a three-dimensioal silicon square spiral photonic crystal,” Cryst. Photonics Nanostruct.1(1), 37–42 (2003). [CrossRef]
  53. A. L. Elias, K. D. Harris, C. W. M. Bastiaansen, D. J. Broer, and M. J. Brett, “Large-area microfabircation of three-dimensional, helical polymer structures,” J. Micromech. Microeng.15(1), 49–54 (2005). [CrossRef]
  54. H. Jin, S. Choi, R. Velu, S. Kim, and H. J. Lee, “Preparation of multilayered CdSe quantum dot sensitizers by electrostatic layer-by-layer assembly and a series of post-treatments toward efficient quantum dot-sensitized mesoporous TiO2 solar cells,” Langmuir28(12), 5417–5426 (2012). [CrossRef] [PubMed]
  55. W. W. Yu, Y. A. Wang, and X. Peng, “Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: Ligand effects on monomers and nanocrystals,” Chem. Mater.15(22), 4300–4308 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited