OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S3 — May. 5, 2014
  • pp: A880–A894

Aperiodic and randomized dielectric mirrors: alternatives to metallic back reflectors for solar cells

Albert Lin, Yan-Kai Zhong, Sze-Ming Fu, Chi Wei Tseng, and Sheng Lun Yan  »View Author Affiliations


Optics Express, Vol. 22, Issue S3, pp. A880-A894 (2014)
http://dx.doi.org/10.1364/OE.22.00A880


View Full Text Article

Enhanced HTML    Acrobat PDF (1170 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Dielectric mirrors have recently emerged for solar cells due to the advantages of lower cost, lower temperature processing, higher throughput, and zero plasmonic absorption as compared to conventional metallic counterparts. Nonetheless, in the past, efforts for incorporating dielectric mirrors into photovoltaics were not successful due to limited bandwidth and insufficient light scattering that prevented their wide usage. In this work, it is shown that the key for ultra-broadband dielectric mirrors is aperiodicity, or randomization. In addition, it has been proven that dielectric mirrors can be widely applicable to thin-film and thick wafer-based solar cells to provide for light trapping comparable to conventional metallic back reflectors at their respective optimal geometries. Finally, the near-field angular emission plot of Poynting vectors is conducted, and it further confirms the superior light-scattering property of dielectric mirrors, especially for diffuse medium reflectors, despite the absence of surface plasmon excitation. The preliminary experimental results also confirm the high feasibility of dielectric mirrors for photovoltaics.

© 2014 Optical Society of America

OCIS Codes
(040.5350) Detectors : Photovoltaic
(050.1940) Diffraction and gratings : Diffraction
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Light Trapping for Photovoltaics

History
Original Manuscript: February 28, 2014
Revised Manuscript: March 29, 2014
Manuscript Accepted: March 31, 2014
Published: April 11, 2014

Citation
Albert Lin, Yan-Kai Zhong, Sze-Ming Fu, Chi Wei Tseng, and Sheng Lun Yan, "Aperiodic and randomized dielectric mirrors: alternatives to metallic back reflectors for solar cells," Opt. Express 22, A880-A894 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-S3-A880


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Hänni, G. Bugnon, G. Parascandolo, M. Boccard, J. Escarré, M. Despeisse, F. Meillaud, and C. Ballif, “High-efficiency microcrystalline silicon single-junction solar cells,” Prog. Photovolt. Res. Appl.21, 821–826 (2013).
  2. B. Lipovšek, J. Krč, O. Isabella, M. Zeman, and M. Topič, “Modeling and optimization of white paint back reflectors for thin-film silicon solar cells,” J. Appl. Phys.108(10), 103115 (2010). [CrossRef]
  3. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express15(25), 16986–17000 (2007). [CrossRef] [PubMed]
  4. X. Sheng, S. G. Johnson, L. Z. Broderick, J. Michel, and L. C. Kimerling, “Integrated photonic structures for light trapping in thin-film Si solar cells,” Appl. Phys. Lett.100(11), 111110 (2012). [CrossRef]
  5. S. L. Chuang, Physics of Photonic Devices, 2nd ed. (Wiley, 2009).
  6. P. Bhattacharya, Semiconductor Optoelectronic Devices, 2nd ed. (Prentice-Hall, 2006).
  7. J. D. Joannopoulos, S. G. Johnson, R. D. Meade, and J. N. Winn, Photonic Crystal: Molding the Flow of Light, 2 ed. (Princeton University Press, 2008).
  8. Y.-C. Lee, C.-F. Huang, J.-Y. Chang, and M.-L. Wu, “Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings,” Opt. Express16(11), 7969–7975 (2008). [CrossRef] [PubMed]
  9. L. Dal Negro, C. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett.90(5), 055501 (2003). [CrossRef] [PubMed]
  10. W. Gellermann, M. Kohmoto, B. Sutherland, and P. C. Taylor, “Localization of light waves in Fibonacci dielectric multilayers,” Phys. Rev. Lett.72(5), 633–636 (1994). [CrossRef] [PubMed]
  11. L. Dal Negro, M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc, and J. Haavisto, “Photon band gap properties and omnidirectional reflectance in Si/SiO 2 Thue–Morse quasicrystals,” Appl. Phys. Lett.84(25), 5186 (2004). [CrossRef]
  12. C. Lin, N. Huang, and M. L. Povinelli, “Effect of aperiodicity on the broadband reflection of silicon nanorod structures for photovoltaics,” Opt. Express20(1S1), A125–A132 (2012). [CrossRef] [PubMed]
  13. C. Lin and M. L. Povinelli, “Optimal design of aperiodic, vertical silicon nanowire structures for photovoltaics,” Opt. Express19(Suppl 5), A1148–A1154 (2011). [CrossRef] [PubMed]
  14. E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: the supercell concept,” Phys. Rev. B86(4), 041404 (2012). [CrossRef]
  15. A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett.100(18), 181110 (2012). [CrossRef]
  16. K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater.11(12), 1017–1022 (2012). [PubMed]
  17. F. Pratesi, M. Burresi, F. Riboli, K. Vynck, and D. S. Wiersma, “Disordered photonic structures for light harvesting in solar cells,” Opt. Express21(Suppl 3), A460–A468 (2013). [CrossRef] [PubMed]
  18. A. Bozzola, M. Liscidini, and L. C. Andreani, “Broadband light trapping with disordered photonic structures in thin-film silicon solar cells,” Prog. Photovolt. Res. Appl.21, 2385 (2013). [CrossRef]
  19. E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun.4, 2665 (2013). [CrossRef] [PubMed]
  20. M. Burresi, F. Pratesi, K. Vynck, M. Prasciolu, M. Tormen, and D. S. Wiersma, “Two-dimensional disorder for broadband, omnidirectional and polarization-insensitive absorption,” Opt. Express21(Suppl 2), A268–A275 (2013). [CrossRef] [PubMed]
  21. P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun.3, 692 (2012). [CrossRef] [PubMed]
  22. P. Nitz, J. Ferber, R. Stangl, H. R. Wilson, and V. Wittwer, “Simulation of multiply scattering media,” Sol. Energ. Mat. Sol. Cells54(1-4), 297–307 (1998). [CrossRef]
  23. W. E. Vargas, A. Amador, and G. A. Niklasson, “Diffuse reflectance of TiO2 pigmented paints: spectral dependence of the average path length parameter and the forward scattering ratio,” Opt. Commun.261(1), 71–78 (2006). [CrossRef]
  24. W. E. Vargas, P. Greenwood, J. E. Otterstedt, and G. A. Niklasson, “Light scattering in pigmented coatings: experiment and theory,” Sol. Energy68(6), 553–561 (2000). [CrossRef]
  25. J. E. Cotter, “Optical intensity of light in layers of silicon with rear diffuse reflectors,” J. Appl. Phys.84(1), 618–624 (1998). [CrossRef]
  26. S. Preble, M. Lipson, and H. Lipson, “Two-dimensional photonic crystals designed by evolutionary algorithms,” Appl. Phys. Lett.86, 061111 (2005).
  27. B. Deken, S. Pekarek, and F. Dogan, “Minimization of field enhancement in multilayer capacitors,” Comput. Mater. Sci.37(3), 401–409 (2006). [CrossRef]
  28. J. B. Pollack and H. Lipson, “Automatic design and manufacture of robotic life forms,” Nature406(6799), 974–978 (2000). [CrossRef] [PubMed]
  29. L. Shen, Z. Ye, and S. He, “Design of two-dimensional photonic crystals with large absolute band gaps using a genetic algorithm,” Phys. Rev. B68, 035109 (2003).
  30. Rsoft, Rsoft CAD User Manual, 8.2 ed. (Rsoft Design Group, 2010).
  31. L. Miao, S. Tanemura, S. Toh, K. Kaneko, and M. Tanemura, “Preparation and characterization of rutile TiO2 nanorods,” J. Mater. Sci. Technol.20, 59–62 (2004).
  32. O. S. o. America, Handbook of Optics, 2nd ed. (McGraw-Hill Professional, 1994), Vol. 2.
  33. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press Handbook Series, 1985).
  34. J. R. Devore, “Refractive indices of rutile and sphalerite,” J. Opt. Soc. Am.41(6), 416–419 (1951). [CrossRef]
  35. C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012). [CrossRef] [PubMed]
  36. K. Söderström, F.-J. Haug, J. Escarré, O. Cubero, and C. Ballif, “Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett.96(21), 213508 (2010). [CrossRef]
  37. O. Deparis and O. El Daif, “Optimization of slow light one-dimensional Bragg structures for photocurrent enhancement in solar cells,” Opt. Lett.37(20), 4230–4232 (2012). [CrossRef] [PubMed]
  38. A. Lin, Y.-K. Zhong, and S.-M. Fu, “The effect of mode excitations on the absorption enhancement for silicon thin film solar cells,” J. Appl. Phys.114(23), 233104 (2013). [CrossRef]
  39. H.-Y. Lin, Y. Kuo, C.-Y. Liao, C. C. Yang, and Y.-W. Kiang, “Surface plasmon effects in the absorption enhancements of amorphous silicon solar cells with periodical metal nanowall and nanopillar structures,” Opt. Express20(1S1), A104–A118 (2012). [CrossRef] [PubMed]
  40. S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys.109(7), 073105 (2011). [CrossRef]
  41. U. W. Paetzold, E. Moulin, B. E. Pieters, R. Carius, and U. Rau, “Design of nanostructured plasmonic back contacts for thin-film silicon solar cells,” Opt. Express19(Suppl 6), A1219–A1230 (2011). [CrossRef] [PubMed]
  42. U. W. Paetzold, E. Moulin, D. Michaelis, W. Bottler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett.99(18), 181105 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited