OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S3 — May. 5, 2014
  • pp: A908–A920

Phase space considerations for light path lengths in planar, isotropic absorbers

Ian Marius Peters  »View Author Affiliations

Optics Express, Vol. 22, Issue S3, pp. A908-A920 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1942 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Fundamental limits for path lengths of light in isotropic absorbers are calculated. The method of calculation is based on accounting for occupied states in optical phase space. Light trapping techniques, such as scattering or diffraction, are represented by the way how the available states are occupied. One finding of the presented investigation is that the path length limit is independent of the light trapping mechanism and only depends on the conditions for light incidence to, and escape from the absorber. A further finding is that the maximum path length is obtained for every light trapping mechanisms which results in a complete filling of the available states in phase space. For stationary solar cells, the Yablonovitch limit of 4dn2, with n the refractive index of the absorber, is a very good approximation of this limit.

© 2014 Optical Society of America

OCIS Codes
(260.6970) Physical optics : Total internal reflection
(350.6050) Other areas of optics : Solar energy
(290.5825) Scattering : Scattering theory

ToC Category:
Light Trapping for Photovoltaics

Original Manuscript: February 7, 2014
Revised Manuscript: March 19, 2014
Manuscript Accepted: March 20, 2014
Published: April 14, 2014

Ian Marius Peters, "Phase space considerations for light path lengths in planar, isotropic absorbers," Opt. Express 22, A908-A920 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Goetzberger, “Optical confinement in thin Si-solar cells by diffuse back reflectors” 15th IEEE Photovoltaic Specialists Conference, 867–870 (1981).
  2. E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. El. Dev. 29(2), 300–305 (1982). [CrossRef]
  3. M. A. Green, “Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solutions,” Prog. Photovolt. Res. Appl. 10(4), 235–241 (2002). [CrossRef]
  4. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72(7), 899–907 (1982). [CrossRef]
  5. J. C. Miñano, “Optical confinement in photovoltaics,” in Physical Limitations to the Photovoltaic Solar Energy Conversion, A. Luque A., Araújo G. L. (Ed.), Adam Hilger, Bristol, UK. (1990).
  6. T. Markvart, “Solar cell as a heat engine: energy-entropy analysis of photovoltaic conversion,” Phys. Status Solidi 205(12), 2752–2756 (2008). [CrossRef]
  7. T. Kirchartz, in Physics of Nanostructured Solar Cells, V. Badescu (Ed.) (Nova Science Publishers, 2009), pp. 1–40.
  8. Z. Yu and S. Fan, “Angular constraint on light-trapping absorption enhancement in solar cells,” Appl. Phys. Lett. 98(1), 011106 (2011). [CrossRef]
  9. The original article was published by J. Liouville in the Journale de Mathematique 3, (1838), 349. Better sources are textbooks on statistical mechanics or quantum systems. One example is W. Blaschke, Vorlesungen ueber Differential-Geometrie I, Springer Verlag Berlin, 68 (1924).
  10. M. Born and E. Wolf, Principles of Optics, 7th Ed. (Cambridge University Press, 1999), pp. 724 – 726.
  11. L. D. Landau, L. P. Pitaevskii, and E. M. Lifshitz, Electrodynamics of Continuous Media, 2nd edition, Volume 8 (Butterworth-Heinemann, 1984), pp. 257 – 264.
  12. N. Sahraei, K. Forberich, S. Venkatara, A. G. Aberle, and M. Peters, “Analytical solution for haze values of aluminium-induced texture (AIT) glass superstrates for a-Si:H solar cells,” Opt. Exp. 22(S1), A53–A67 (2014). [CrossRef]
  13. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010). [CrossRef] [PubMed]
  14. A. Mellor, I. Tobias, A. Marti, M. J. Mendes, and A. Luque, “Upper limits to absorption enhancement in thick solar cells using diffraction gratings,” Prog. Photovolt. Res. Appl. 19(6), 676–687 (2011). [CrossRef]
  15. J. Gjessing, A. S. Sudbo, and E. S. Marstein, “A novel back-side light trapping structure for thin silicon solar cells,” J. Euro. Opt. Soc. 6, 11020 (2011).
  16. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010). [CrossRef] [PubMed]
  17. C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012). [CrossRef] [PubMed]
  18. M. Peters, C. Battaglia, K. Forberich, B. Bläsi, N. Sahraei, and A. G. Aberle, “Comparison between periodic and stochastic parabolic light trapping structures for thin-film microcrystalline Silicon solar cells,” Opt. Express 20(28), 29488–29499 (2012). [CrossRef] [PubMed]
  19. M. A. Green, “Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solutions,” Prog. Photovolt. Res. Appl. 10(4), 235–241 (2002). [CrossRef]
  20. M. Peters, J. C. Goldschmidt, and B. Bläsi, “Angular confinement and concentration in photovoltaic converters,” Sol. Energy Mater. Sol. Cells 94(8), 1393–1398 (2010). [CrossRef]
  21. C. Ulbrich, M. Peters, B. Bläsi, T. Kirchartz, A. Gerber, and U. Rau, “Enhanced light trapping in thin-film solar cells by a directionally selective filter,” Opt. Express 18(S2), A133–A138 (2010). [CrossRef] [PubMed]
  22. B. T. Phong, “Illumination for computer generated pictures,” Commun. ACM 18(6), 311–317 (1975). [CrossRef]
  23. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3Suppl 3), A366–A380 (2010). [CrossRef] [PubMed]
  24. C.-J. Winter, R. L. Sizmann, and L. L. Vant-Hull, eds., Solar Power Plants, Springer-Verlag, 2008), pp. 297–300.
  25. Z. Yu, A. Raman, and S. Fan, “Thermodynamic upper bound on broadband light coupling with photonic structures,” Phys. Rev. Lett. 109(17), 173901 (2012). [CrossRef] [PubMed]
  26. P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987). [CrossRef]
  27. P. Panek, M. Lipinski, and J. Dutkiewicz, “Texturization of multicrystalline silicon by wet chemical etching for silicon solar cells,” J. Mater. Sci. 40(6), 1459–1463 (2005). [CrossRef]
  28. S. C. Baker-Finch, K. R. McIntosh, and M. L. Terry, “Isotextured silicon solar cell analysis and modeling 1: optics,” IEEE J. Photovolt. 2(4), 457–464 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited