OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S3 — May. 5, 2014
  • pp: A921–A929

Design of a high efficiency ultrathin CdS/CdTe solar cell using back surface field and backside distributed Bragg reflector

Saeed Khosroabadi and Seyyed Hossein Keshmiri  »View Author Affiliations


Optics Express, Vol. 22, Issue S3, pp. A921-A929 (2014)
http://dx.doi.org/10.1364/OE.22.00A921


View Full Text Article

Enhanced HTML    Acrobat PDF (1169 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A high efficiency CdS/CdTe solar cell was designed with a reduced CdTe absorber-layer thickness and a distributed Bragg reflector (DBR) as an optical reflector and a ZnTe layer as back surface field (BSF) layer. Simulation results showed that with combination of DBR and BSF layers and 0.3 µm thick CdTe, the conversion efficiency was increased about 3.2% as compared with a reference cell (with 4 µm thick CdTe layer). It was also shown that the efficiency can be increased up to 6.02% by using a long carrier lifetime in the absorber layer. Under global AM 1.5G conditions, the proposed cell structure had an open-circuit voltage of 1.062 V, a short-circuit current density of 24.64 mA/cm2, and a fill factor of 81.3%, corresponding to a total area conversion efficiency of 21.02%.

© 2014 Optical Society of America

OCIS Codes
(040.5350) Detectors : Photovoltaic
(350.6050) Other areas of optics : Solar energy
(310.6805) Thin films : Theory and design
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Photovoltaics

History
Original Manuscript: February 17, 2014
Revised Manuscript: March 28, 2014
Manuscript Accepted: March 31, 2014
Published: April 14, 2014

Citation
Saeed Khosroabadi and Seyyed Hossein Keshmiri, "Design of a high efficiency ultrathin CdS/CdTe solar cell using back surface field and backside distributed Bragg reflector," Opt. Express 22, A921-A929 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-S3-A921


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. R. Paudel, K. A. Wieland, and A. D. Compaan, “Ultrathin CdS/CdTe solar cells by sputtering,” Sol. Energy Mater. Sol. Cells105, 109–112 (2012). [CrossRef]
  2. N. Amin, K. Sopian, and M. Konagai, “Numerical modeling of CdS/CdTe and CdS/CdTe/ZnTe solar cells as a function of CdTe thickness,” Sol. Energy Mater. Sol. Cells91(13), 1202–1208 (2007). [CrossRef]
  3. S. Khosroabadi and S. H. Keshmiri, “Design of high performance CdS/CdTe solar cells by optimization of step doping and thickness of the CdTe absorption layer,” in Proceedings of 21th Iranian Conference on Electrical Engineering (ICEE) (Mashad, Iran, 2013), pp. 1–4. [CrossRef]
  4. A. Kanevce and T. A. Gessert, “Optimizing CdTe solar cell performance: impact of variations in minority-carrier lifetime and carrier density profile,” IEEE J. Photovoltaics.1(1), 99–103 (2011). [CrossRef]
  5. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (Version38),” Prog. Photovolt. Res. Appl.19(5), 565–572 (2011). [CrossRef]
  6. L. A. Kosyachenko, A. I. Savchuk, and E. V. Grushko, “Dependence of efficiency of thin-film CdS/CdTe solar cell on parameters of absorber layer and barrier structure,” Thin Solid Films517(7), 2386–2391 (2009). [CrossRef]
  7. J. Britt and C. Ferekides, “Thin film CdS/CdTe solar cell with 15.8% efficiency,” Appl. Phys. Lett.62(22), 2851–2852 (1993). [CrossRef]
  8. J. L. Peña, O. Ares, V. Rejon, A. Rios-Flores, J. M. Camacho, N. Romeo, and A. Bosio, “A detailed study of the series resistance effect on CdS/CdTe solar cells with Cu/Mo back contact,” Thin Solid Films520(2), 680–683 (2011). [CrossRef]
  9. E. Colegrove, R. Banai, C. Blissett, C. Buurma, J. Ellsworth, M. Morley, S. Barnes, C. Gilmore, J. D. Bergeson, R. Dhere, M. Scott, T. Gessert, and S. Sivananthan, “High-efficiency polycrystalline CdS/CdTe solar cells on buffered commercial TCO-coated glass,” J. Electron. Mater.41(10), 2833–2837 (2012). [CrossRef]
  10. T. M. Razykov, C. S. Ferekides, D. Morel, E. Stefanakos, H. S. Ullal, and H. M. Upadhyaya, “Solar photovoltaic electricity: Current status and future prospects,” Sol. Energy85(8), 1580–1608 (2011). [CrossRef]
  11. A. Rios-Flores, O. Arés, J. M. Camacho, V. Rejon, and J. L. Peña, “Procedure to obtain higher than 14% efficient thin film CdS/CdTe solar cells activated with HCF2Cl gas,” Sol. Energy86(2), 780–785 (2012).
  12. T. Aramoto, H. Ohyama, and S. Kumazawa, “16.0% efficient thin film CdS-CdTe solar,” Jpn. J. Appl. Phys.36(10), 6304–6305 (1997). [CrossRef]
  13. X. Wu, J. C. Keane, R. G. Dhere, C. DeHart, D. S. Albin, A. Duda, T. A. Gessert, S. Asher, D. H. Levi, and P. Sheldon, “16.5% Efficient CdS/CdTe polycrystalline thin film solar cell” in Proceedings of 17th Conf. IEEE European Photovoltaic Solar Energy (Munich, Germany, 2001), pp. 995–1000.
  14. First Solar Inc (2014), http://investor.firstsolar.com/releasedetail.cfm?ReleaseID=828273 .
  15. http://www.silvaco.com/products/device_simulation/atlas.html .
  16. J. Gjessing, E. S. Marstein, and A. Sudbø, “2D back-side diffraction grating for improved light trapping in thin silicon solar cells,” Opt. Express18(6), 5481–5495 (2010). [CrossRef] [PubMed]
  17. X. Meng, G. Gomard, O. El Daif, E. Drouard, R. Orobtchouk, A. Kaminski, A. Fave, M. Lemiti, A. Abramov, P. Roca i Cabarrocas, and C. Seassal, “Absorbing photonic crystals for silicon thin-film solar cells: Design, fabrication and experimental investigation,” Sol. Energy Mater. Sol. Cells95, S32–S38 (2011). [CrossRef]
  18. R. R. Lunt and V. Bulovic, “Transparent, near-infrared organic photovoltaic solar cells for window and energy-scavenging applications,” Appl. Phys. Lett.98(11), 113305 (2011). [CrossRef]
  19. J. Krc, M. Zeman, S. L. Luxembourg, and M. Topic, “Modulated photonic-crystal structures as broadband back reflectors in thin-film solar cells,” Appl. Phys. Lett.94(15), 153501 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited