OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S3 — May. 5, 2014
  • pp: A930–A940

Near-unity broadband absorption designs for semiconducting nanowire arrays via localized radial mode excitation

Katherine T. Fountaine, Christian G. Kendall, and Harry A. Atwater  »View Author Affiliations


Optics Express, Vol. 22, Issue S3, pp. A930-A940 (2014)
http://dx.doi.org/10.1364/OE.22.00A930


View Full Text Article

Enhanced HTML    Acrobat PDF (3152 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report design methods for achieving near-unity broadband light absorption in sparse nanowire arrays, illustrated by results for visible absorption in GaAs nanowires on Si substrates. Sparse (<5% fill fraction) nanowire arrays achieve near unity absorption at wire resonant wavelengths due to coupling into ‘leaky’ radial waveguide modes of individual wires and wire-wire scattering processes. From a detailed conceptual development of radial mode resonant absorption, we demonstrate two specific geometric design approaches to achieve near unity broadband light absorption in sparse nanowire arrays: (i) introducing multiple wire radii within a small unit cell array to increase the number of resonant wavelengths, yielding a 15% absorption enhancement relative to a uniform nanowire array and (ii) tapering of nanowires to introduce a continuum of diameters and thus resonant wavelengths excited within a single wire, yielding an 18% absorption enhancement over a uniform nanowire array.

© 2014 Optical Society of America

OCIS Codes
(160.6000) Materials : Semiconductor materials
(220.2740) Optical design and fabrication : Geometric optical design
(350.6050) Other areas of optics : Solar energy
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Light Trapping for Photovoltaics

History
Original Manuscript: February 10, 2014
Revised Manuscript: April 6, 2014
Manuscript Accepted: April 6, 2014
Published: April 18, 2014

Citation
Katherine T. Fountaine, Christian G. Kendall, and Harry A. Atwater, "Near-unity broadband absorption designs for semiconducting nanowire arrays via localized radial mode excitation," Opt. Express 22, A930-A940 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-S3-A930


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett.7(11), 3249–3252 (2007). [CrossRef] [PubMed]
  2. O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett.8(9), 2638–2642 (2008). [CrossRef] [PubMed]
  3. P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat Commun3(692), 692 (2012). [CrossRef] [PubMed]
  4. C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express17(22), 19371–19381 (2009). [CrossRef] [PubMed]
  5. J. Li, H. Yu, S. M. Wong, X. Li, G. Zhang, P. G. Lo, and D. L. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell application,” Appl. Phys. Lett.95(243113), 1–3 (2009).
  6. L. Wen, Z. Zhao, X. Li, Y. Shen, H. Guo, and Y. Wang, “Theoretical analysis and modeling of light trappig in high efficiency GaAs nanowire array solar cells,” Appl. Phys. Lett.99(143116), 1–3 (2011).
  7. Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett.10(10), 3823–3827 (2010). [CrossRef] [PubMed]
  8. L. Cao, J. S. White, J. S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater.8(8), 643–647 (2009). [CrossRef] [PubMed]
  9. S. K. Kim, R. W. Day, J. F. Cahoon, T. J. Kempa, K. D. Song, H. G. Park, and C. M. Lieber, “Tuning Light Absorption in core/shell silicon nanowire photovoltaic devices through morphological design,” Nano Lett.12(9), 4971–4976 (2012). [CrossRef] [PubMed]
  10. K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored Vertical Silicon Nanowires,” Nano Lett.11(4), 1851–1856 (2011). [CrossRef] [PubMed]
  11. B. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys.97(114302), 1–11 (2005).
  12. E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett.10(3), 1082–1087 (2010). [CrossRef] [PubMed]
  13. L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett.10(2), 439–445 (2010). [CrossRef] [PubMed]
  14. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010). [PubMed]
  15. J. Kupec and B. Witzigmann, “Dispersion, wav propagation and efficiency analysis of nanowire solar cells,” Opt. Exp.17(12), 10399–10410 (2009). [CrossRef]
  16. R. R. LaPierre, “Theoretical conversion efficiency of a two-junction III-V nanowire on Si solar cell,” J. Appl. Phys.109(014310), 1–6 (2011).
  17. E. Ertekin, P. A. Greaney, D. C. Chrzan, and T. D. Sands, “Equilibrium limits of coherency in strained nanowire heterostructures,” J. Appl. Phys.97(114325), 1–10 (2005).
  18. L. C. Chuang, M. Moewe, C. Chase, N. P. Kobayashi, C. Chang-Hasnain, and S. Crankshaw, “Critical diameter for III-V nanowires grown on lattice mismatched substrates,” Appl. Phys. Lett.90(043115), 1–3 (2007).
  19. M. Heiss, E. Russo-Averchi, A. Dalmau-Mallorquí, G. Tütüncüoğlu, F. Matteini, D. Rüffer, S. Conesa-Boj, O. Demichel, E. Alarcon-Lladó, and A. Fontcuberta i Morral, “III-V nanowire arrays: growth and light interaction,” Nanotechnology25(1), 014015 (2014). [CrossRef] [PubMed]
  20. J. Noborisaka, J. Motohisa, and T. Fukui, “Catalyst-free growth of GaAs nanowires by selective-area metalorganic vapor-phase epitaxy,” Appl. Phys. Lett.86(213102), 1–3 (2005).
  21. G. Mariani, P. S. Wong, A. M. Katzenmeyer, F. Léonard, J. Shapiro, and D. L. Huffaker, “Patterned radial GaAs nanopillar solar cells,” Nano Lett.11(6), 2490–2494 (2011). [CrossRef] [PubMed]
  22. T. Mårtensson, P. Carlberg, M. Borgstrom, L. Montelius, W. Seifert, and L. Samuelson, “Nanowire arrays defined by nanoimprint lithography,” Nano Lett.4(4), 699–702 (2004). [CrossRef]
  23. A. Deinega and S. John, “Solar power conversion efficiency in modulated silicon nanowire photonic crystals,” J. Appl. Phys.112(074327), 1–7 (2012).
  24. L. Hong, X. Rusli, H. Wang, H. Zheng, and H. Y. Yu, “Design guidelines for slanting silicon nanowire arrays for solar cell application,” J. Appl. Phys.114(084303), 1–6 (2013).
  25. A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. A78(023825), 1–15 (2008).
  26. B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, C. M. de Sterke, and R. C. McPhedran, “Modal analysis of enhanced absorption in silicon nanowire arrays,” Opt. Express19(S5Suppl 5), A1067–A1081 (2011). [CrossRef] [PubMed]
  27. S. Hu, C. Chi, K. T. Fountaine, M. Yao, H. A. Atwater, P. D. Dapkus, N. S. Lewis, and C. Zhou, “Optical, electrical, and solar energy-conversion properties of gallium arsenide nanowire-array photoanodes,” Energy Environ. Sci.6(6), 1879–1890 (2013). [CrossRef]
  28. G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. Gómez Rivas, “Nanowire antenna emission,” Nano Lett.12(11), 5481–5486 (2012). [CrossRef] [PubMed]
  29. Y. Yu and L. Cao, “Coupled leaky mode theory for light absorption in 2D, 1D, and 0D semiconductor nanostructures,” Opt. Express20(13), 13847–13856 (2012). [CrossRef] [PubMed]
  30. Y. M. Chang, J. Shieh, and J. Y. Juang, “Subwavelength antireflective Si nanostructures fabricated by using the self-assembled silver metal-nanomask,” J. Phys. Chem. C115(18), 8983–8987 (2011). [CrossRef]
  31. S. Patchett, M. Khorasaninejad, O. Nixon, and S. S. Saini, “Effective index approximation for ordered silicon nanowire arrays,” JOSA B30(2), 306–313 (2013). [CrossRef]
  32. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am.72(7), 899–907 (1982). [CrossRef]
  33. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A.107(41), 17491–17496 (2010). [CrossRef] [PubMed]
  34. D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett.12(1), 214–218 (2012). [CrossRef] [PubMed]
  35. S. L. Diedenhofen, O. T. A. Janssen, G. Grzela, E. P. A. M. Bakkers, and J. Gómez Rivas, “Strong geometrical dependence of the absorption of light in arrays of semiconductor nanowires,” ACS Nano5(3), 2316–2323 (2011). [CrossRef] [PubMed]
  36. H. Cansizoglu, M. F. Cansizoglu, M. Finckenor, and T. Karabacak, “Optical absorption properties of semiconducting nanostructures with different shapes,” Adv. Opt. Mat.1(2), 158–166 (2013). [CrossRef]
  37. D. M. Callahan, K. A. W. Horowitz, and H. A. Atwater, “Light trapping in ultrathin silicon photonic cristal superlattices with randomly-textured dielectric incouplers,” Opt. Exp.21(25), 30315–30326 (2013). [CrossRef]
  38. C. X. Lin, N. F. Huang, and M. L. Povinelli, “Effect of aperiodicity on the broadhand reflection of silicon nanorod structures for photovoltaics,” Opt. Exp.20(S1), A125–A132 (2012). [CrossRef]
  39. K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater.11(12), 1017–1022 (2012). [PubMed]
  40. K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett.12(3), 1616–1619 (2012). [CrossRef] [PubMed]
  41. B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. Martijn de Sterke, “Nanowire array photovoltaics: radial disorder versus design for optimal efficiency,” Appl. Phys. Lett.101(173902), 1–4 (2012).
  42. H. Alaeian, A. C. Atre, and J. A. Dionne, “Optimized light absorption in Si wire array solar cells,” J. Opt.14(024006), 1–6 (2012).
  43. J. Y. Jung, Z. Guo, S. W. Jee, H. D. Um, K. T. Park, and J. H. Lee, “A strong antireflective solar cell prepared by tapering silicon nanowires,” Opt. Express18(S3Suppl 3), A286–A292 (2010). [CrossRef] [PubMed]
  44. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 42),” Prog. Photovolt. Res. Appl.21(1), 827–837 (2013). [CrossRef]
  45. P. Mohan, J. Motohisa, and T. Fukui, “Controlled growth of highly uniform, axial/radial direction-defined, individually addressable InP nanowire arrays,” Nanotech.16(12), 2903–2907 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited