OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S3 — May. 5, 2014
  • pp: A947–A959

Retrieval of vertical particle concentration profiles by optical remote sensing: a model study

Jaime Pitarch, Daniel Odermatt, Marcin Kawka, and Alfred Wüest  »View Author Affiliations

Optics Express, Vol. 22, Issue S3, pp. A947-A959 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1094 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Water-leaving radiance is subject to depth variability of the water constituents. The optical penetration depth is strongly dependent on the wavelength λ, which allows to retrieve a non-uniform vertical profile of an optically-active constituent CTSM(z) from remote-sensing reflectance Rrs(λ,Cz). We define the apparent particle concentration CTSM,app(λ) of a vertically homogeneous water column whose Rrs(λ,Cconst) matches Rrs(λ,Cz). Subsequently, we define a vertically-weighted averaged particle concentration CTSM,ave(λ), only dependent on CTSM(z), and retrieve CTSM(z) by minimizing the error between CTSM,app(λ) and CTSM,ave(λ) with genetic algorithms. We conclude that the retrieval is excellent if the sub-surface maximum lays close to the surface or the background concentration of CTSM(z) is low. Conversely, results worsen for opposite conditions, due to insufficient signal strength from superimposed sub-surface maxima.

© 2014 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(010.7340) Atmospheric and oceanic optics : Water
(280.0280) Remote sensing and sensors : Remote sensing and sensors

ToC Category:
Remote Sensing and Sensors

Original Manuscript: March 6, 2014
Revised Manuscript: April 9, 2014
Manuscript Accepted: April 11, 2014
Published: April 18, 2014

Virtual Issues
Vol. 9, Iss. 7 Virtual Journal for Biomedical Optics

Jaime Pitarch, Daniel Odermatt, Marcin Kawka, and Alfred Wüest, "Retrieval of vertical particle concentration profiles by optical remote sensing: a model study," Opt. Express 22, A947-A959 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Fennel and E. Boss, “Subsurface maxima of phytoplankton and chlorophyll: Steady-state solutions from a simple model,” Limnol. Oceanogr. 48(4), 1521–1534 (2003). [CrossRef]
  2. A. B. Ryabov, L. Rudolf, and B. Blasius, “Vertical distribution and composition of phytoplankton under the influence of an upper mixed layer,” J. Theor. Biol. 263(1), 120–133 (2010). [CrossRef] [PubMed]
  3. J. P. Mellard, K. Yoshiyama, E. Litchman, and C. A. Klausmeier, “The vertical distribution of phytoplankton in stratified water columns,” J. Theor. Biol. 269(1), 16–30 (2011). [CrossRef] [PubMed]
  4. M. R. Clegg, U. Gaedke, B. Boehrer, and E. Spijkerman, “Complementary ecophysiological strategies combine to facilitate survival in the hostile conditions of a deep chlorophyll maximum,” Oecologia 169(3), 609–622 (2012). [CrossRef] [PubMed]
  5. D. Odermatt, F. Pomati, J. Pitarch, J. Carpenter, M. Kawka, M. Schaepman, and A. Wüest, “MERIS observations of phytoplankton blooms in a stratified eutrophic lake,” Remote Sens. Environ. 126, 232–239 (2012). [CrossRef]
  6. P. Forget, P. Broche, and J.-J. Naudin, “Reflectance sensitivity to solid suspended sediment stratification in coastal water and inversion: A case study,” Remote Sens. Environ. 77(1), 92–103 (2001). [CrossRef]
  7. Q. Yang, D. Stramski, and M.-X. He, “Modeling the effects of near-surface plumes of suspended particulate matter on remote-sensing reflectance of coastal waters,” Appl. Opt. 52(3), 359–374 (2013). [CrossRef] [PubMed]
  8. D. Odermatt, A. Gitelson, V. E. Brando, and M. Schaepman, “Review of constituent retrieval in optically deep and complex waters from satellite imagery,” Remote Sens. Environ. 118, 116–126 (2012). [CrossRef]
  9. H. R. Gordon, “Remote sensing of optical properties in continuously stratified waters,” Appl. Opt. 17(12), 1893–1897 (1978). [CrossRef] [PubMed]
  10. M. Stramska and D. Stramski, “Effects of a nonuniform vertical profile of chlorophyll concentration on remote-sensing reflectance of the ocean,” Appl. Opt. 44(9), 1735–1747 (2005). [CrossRef] [PubMed]
  11. T. Kutser, L. Metsamaa, and A. G. Dekker, “Influence of the vertical distribution of cyanobacteria in the water column on the remote sensing signal,” Estuar. Coast. Shelf Sci. 78(4), 649–654 (2008). [CrossRef]
  12. L. Davis, Handbook of genetic algorithms (Van Nostrand Reinhold, New York, 1991).
  13. P. Gege, “Characterization of the phytoplankton in Lake Constance for classification by remote sensing (with 6 figures and 2 tables),” in Lake Constance, Characterization of an Ecosystem in Transition, E. Baeuerle and U. Gaedke, eds. (E. Schweizerbart'sche Verlagsbuchhandlung (Nägele und Obermiller), 1998), pp. 179–194.
  14. H. R. Gordon and D. K. Clark, “Remote sensing optical properties of a stratified ocean: an improved interpretation,” Appl. Opt. 19(20), 3428–3430 (1980). [CrossRef] [PubMed]
  15. J. R. Zaneveld, A. Barnard, and E. Boss, “Theoretical derivation of the depth average of remotely sensed optical parameters,” Opt. Express 13(22), 9052–9061 (2005). [CrossRef] [PubMed]
  16. C. D. Mobley and L. K. Sundman, Hydrolight 5 Technical Documentation (Sequoia Scientific, Inc., 2008), http://www.hydrolight.info .
  17. R. M. Pope and E. S. Fry, “Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36(33), 8710–8723 (1997). [CrossRef] [PubMed]
  18. R. C. Smith and K. S. Baker, “Optical properties of the clearest natural waters (200-800 nm),” Appl. Opt. 20(2), 177–184 (1981). [CrossRef] [PubMed]
  19. A. W. Harrison and C. A. Coombes, “An opaque cloud cover model of sky short wavelength radiance,” Sol. Energy 41(4), 387–392 (1988). [CrossRef]
  20. F. Kasten and G. Czeplak, “Solar and terrestrial radiation dependent on the amount and type of cloud,” Sol. Energy 24(2), 177–189 (1980). [CrossRef]
  21. H. R. Gordon, “Diffuse reflectance of the ocean: influence of nonuniform phytoplankton pigment profile,” Appl. Opt. 31(12), 2116–2129 (1992). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited