OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S3 — May. 5, 2014
  • pp: A961–A972

Energy transfer in Eu3+ doped scheelites: use as thermographic phosphor

Katrien W. Meert, Vladimir A. Morozov, Artem M. Abakumov, Joke Hadermann, Dirk Poelman, and Philippe F. Smet  »View Author Affiliations


Optics Express, Vol. 22, Issue S3, pp. A961-A972 (2014)
http://dx.doi.org/10.1364/OE.22.00A961


View Full Text Article

Enhanced HTML    Acrobat PDF (3586 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper the luminescence of the scheelite-based CaGd2(1-x)Eu2x(WO4)4 solid solutions is investigated as a function of the Eu content and temperature. All phosphors show intense red luminescence due to the 5D07F2 transition in Eu3+, along with other transitions from the 5D1 and 5D0 excited states. For high Eu3+ concentrations the intensity ratio of the emission originating from the 5D1 and 5D0 levels has a non-conventional temperature dependence, which could be explained by a phonon-assisted cross-relaxation process. It is demonstrated that this intensity ratio can be used as a measure of temperature with high spatial resolution, allowing the use of these scheelites as thermographic phosphor. The main disadvantage of many thermographic phosphors, a decreasing signal for increasing temperature, is absent.

© 2014 Optical Society of America

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(280.6780) Remote sensing and sensors : Temperature

ToC Category:
Fluorescent and Luminescent Materials

History
Original Manuscript: February 19, 2014
Revised Manuscript: April 7, 2014
Manuscript Accepted: April 7, 2014
Published: April 22, 2014

Citation
Katrien W. Meert, Vladimir A. Morozov, Artem M. Abakumov, Joke Hadermann, Dirk Poelman, and Philippe F. Smet, "Energy transfer in Eu3+ doped scheelites: use as thermographic phosphor," Opt. Express 22, A961-A972 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-S3-A961


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Qin, Y. Huang, T. Tsuboi, and H. J. Seo, “The red-emitting phosphors of Eu3+ - activated MR2(MoO4)4 (M = Ba, Sr, Ca; R=La3+, Gd3+,Y3+) for light emitting diodes,” Mater. Res. Bull.47(12), 4498–4502 (2012). [CrossRef]
  2. M. M. Haque and D.-K. Kim, “Luminescent properties of Eu3+ activated MLa2(MoO4)4 based (M = Ba, Sr and Ca) novel red-emitting phosphors,” Mater. Lett.63(9-10), 793–796 (2009). [CrossRef]
  3. B. S. Barros, A. C. de Lima, Z. R. da Silva, D. M. A. Melo, and S. Alves., “Synthesis and photoluminescent behavior of Eu3+-doped alkaline-earth tungstates,” J. Phys. Chem. Solids73(5), 635–640 (2012). [CrossRef]
  4. V. Bachmann, C. Ronda, and A. Meijerink, “Temperature Quenching of Yellow Ce3+ Luminescence in YAG:Ce,” Chem. Mater.21(10), 2077–2084 (2009). [CrossRef]
  5. W. B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikhailovsky, J. Hu, B. F. Chmelka, S. P. DenBaars, and R. Seshadri, “Efficient and Color-Tunable Oxyfluoride Solid Solution Phosphors for Solid-State White Lighting,” Adv. Mater.23(20), 2300–2305 (2011). [CrossRef] [PubMed]
  6. Y. Yang, Q. Zhao, W. Feng, and F. Li, “Luminescent Chemodosimeters for Bioimaging,” Chem. Rev.113(1), 192–270 (2013). [CrossRef] [PubMed]
  7. K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamoto, “Luminescence Properties of a Red Phosphor, CaAlSiN3 : Eu2+, for White Light-Emitting Diodes,” J. Electrochem. Soc.9, H22–H25 (2006).
  8. X. Zhang, F. Meng, H. Li, and H. J. Seo, “Synthesis and luminescence of Eu3+-activated molybdates with scheelite-type structure,” Phys. Status Solidi210, 1866–1870 (2013).
  9. P. Benalloul, C. Barthou, and J. Benoit, “SrGa2S4: RE phosphors for full colour electroluminescent displays,” J. Alloy. Comp.275–277, 709–715 (1998). [CrossRef]
  10. C.-H. Kim, I.-E. Kwon, C.-H. Park, Y.-J. Hwang, H.-S. Bae, B.-Y. Yu, C.-H. Pyun, and G.-Y. Hong, “Phosphors for plasma display panels,” J. Alloy. Comp.311(1), 33–39 (2000). [CrossRef]
  11. N. Ishiwada, T. Ueda, and T. Yokomori, “Characteristics of rare earth (RE = Eu, Tb, Tm)-doped Y2O3 phosphors for thermometry,” Luminescence26(6), 381–389 (2011). [CrossRef] [PubMed]
  12. M. D. Chambers, P. A. Rousseve, and D. R. Clarke, “Decay pathway and high-temperature luminescence of Eu3+ in Ca2Gd8Si6O26,” J. Lumin.129(3), 263–269 (2009). [CrossRef]
  13. Y. Cui, H. Xu, Y. Yue, Z. Guo, J. Yu, Z. Chen, J. Gao, Y. Yang, G. Qian, and B. Chen, “A Luminescent Mixed-Lanthanide Metal-Organic Framework Thermometer,” J. Am. Chem. Soc.134(9), 3979–3982 (2012). [CrossRef] [PubMed]
  14. A. E. Albers, E. M. Chan, P. M. McBride, C. M. Ajo-Franklin, B. E. Cohen, and B. A. Helms, “Dual-Emitting Quantum Dot/Quantum Rod-Based Nanothermometers with Enhanced Response and Sensitivity in Live Cells,” J. Am. Chem. Soc.134(23), 9565–9568 (2012). [CrossRef] [PubMed]
  15. B. Lai, L. Feng, J. Wang, and Q. Su, “Optical transition and upconversion luminescence in Er3+ doped and Er3+–Yb3+ co-doped fluorophosphate glasses,” Opt. Mater.32(9), 1154–1160 (2010). [CrossRef]
  16. X. Wang, J. Zheng, Y. Xuan, and X. Yan, “Optical temperature sensing of NaYbF4: Tm3+@SiO2 core-shell micro-particles induced by infrared excitation,” Opt. Express21(18), 21596–21606 (2013). [CrossRef] [PubMed]
  17. J. P. Feist, A. L. Heyes, and S. Seefelt, “Thermographic phosphor thermometry for film cooling studies in gas turbine combustors,” P. I. Mech. Eng. A – J. Pow.217, 193–200 (2003).
  18. L. C. Bradley, “A Temperature-Sensitive Phosphor Used to Measure Surface Temperatures in Aerodynamics,” Rev. Sci. Instrum.24(3), 219–220 (1953). [CrossRef]
  19. P. Neubert, “Device for indicating the temperature distribution of hot bodies,” US Patent no. 2,071.471 (1937).
  20. M. M. Gentleman, V. Lughi, J. A. Nychka, and D. R. Clarke, “Noncontact Methods for Measuring Thermal Barrier Coating Temperatures,” Int. J. Appl. Ceram. Technol.3(2), 105–112 (2006). [CrossRef]
  21. H. Peng, M. I. J. Stich, J. Yu, L. N. Sun, L. H. Fischer, and O. S. Wolfbeis, “Luminescent Europium(III) Nanoparticles for Sensing and Imaging of Temperature in the Physiological Range,” Adv. Mater.22(6), 716–719 (2010). [CrossRef] [PubMed]
  22. S. M. Borisov, A. S. Vasylevska, C. Krause, and O. S. Wolfbeis, “Composite Luminescent Material for Dual Sensing of Oxygen and Temperature,” Adv. Funct. Mater.16(12), 1536–1542 (2006). [CrossRef]
  23. H. Kusama, O. J. Sovers, and T. Yoshioka, “Line shift method for phosphor temperature - measurements,” Jpn. J. Appl. Phys.15(12), 2349–2358 (1976). [CrossRef]
  24. A. Khalid and K. Kontis, “Thermographic Phosphors for High Temperature Measurements: Principles, Current State of the Art and Recent Applications,” Sensors (Basel Switzerland)8(9), 5673–5744 (2008). [CrossRef]
  25. J. Brübach, C. Pflitsch, A. Dreizler, and B. Atakan, “On surface temperature measurements with thermographic phosphors: A review,” Prog. Energ. Combust.39(1), 37–60 (2013). [CrossRef]
  26. M. G. Nikolic, D. J. Jovanovic, V. Dordevic, Z. Antic, R. M. Krsmanovic, and M. D. Dramicanin, “Thermographic properties of Sm3+- doped GdVO4 phosphor,” Phys. Scr. T149, 1–4 (2012).
  27. A. L. Heyes and J. P. Feist, “The characterization of Y2O2S:Sm powder as a thermographic phosphor for high temperature applications,” Meas. Sci. Technol.11(7), 942–947 (2000). [CrossRef]
  28. J. P. Feist, A. L. Heyes, and J. R. Nicholls, “Phosphor thermometry in an electron beam physical vapour deposition produced thermal barrier coating doped with dysprosium,” Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng.215(6), 333–341 (2001). [CrossRef]
  29. V. A. Morozov, A. Bertha, K. W. Meert, S. Van Rompaey, D. Batuk, G. T. Martinez, S. Van Aert, P. F. Smet, M. V. Raskina, D. Poelman, A. M. Abakumov, and J. Hadermann, “Incommensurate Modulation and Luminescence in the CaGd2(1–x)Eu2x(MoO4)4(1–y)(WO4)4y (0 ≤ x ≤ 1, 0 ≤ y ≤ 1) Red Phosphors,” Chem. Mater.25(21), 4387–4395 (2013). [CrossRef]
  30. W. Zhang, J. Long, A. Fan, and J. Li, “Effect of replacement of Ca by Ln (Ln = Y, Gd) on the structural and luminescence properties of CaWO4:Eu3+ red phosphors prepared via co-precipitation,” Mater. Res. Bull.47(11), 3479–3483 (2012). [CrossRef]
  31. G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer - Verlag, 1994).
  32. S. K. Shi, X. R. Liu, J. Gao, and J. Zhou, “Spectroscopic properties and intense red-light emission of (Ca, Eu,M)WO4 (M = Mg, Zn, Li),” Spectroc. Acta Pt. A-Molec. Biomolec. Spectr.69(2), 396–399 (2008). [CrossRef]
  33. G. Blasse, “The luminescence of closed-shell transition-metal complexes. New developments,” in Luminescence and Energy Transfer (Springer Berlin Heidelberg, 1980), pp. 1–41.
  34. S. Alahraché, K. Al Saghir, S. Chenu, E. Véron, D. De Sousa Meneses, A. I. Becerro, M. Ocaña, F. Moretti, G. Patton, C. Dujardin, F. Cussó, J.-P. Guin, M. Nivard, J.-C. Sangleboeuf, G. Matzen, and M. Allix, “Perfectly transparent Sr3Al2O6 polycrystalline ceramic elaborated from glass crystallization,” Chem. Mater.25(20), 4017–4024 (2013). [CrossRef]
  35. P. A. Tanner, “Some misconceptions concerning the electronic spectra of tri-positive europium and cerium,” Chem. Soc. Rev.42(12), 5090–5101 (2013). [CrossRef] [PubMed]
  36. G. Blasse, A. Bril, and W. C. Nieuwpoort, “On the Eu3+ fluorescence in mixed metal oxides. Part I - The crystal structure sensitivity of the intensity ratio of electric and magnetic dipole emission,” J. Phys. Chem. Solids27(10), 1587–1592 (1966). [CrossRef]
  37. K. Binnemans, “Lanthanide-based luminescent hybrid materials,” Chem. Rev.109(9), 4283–4374 (2009). [CrossRef] [PubMed]
  38. Y. Su, L. Li, and G. Li, “Synthesis and Optimum Luminescence of CaWO4-Based Red Phosphors with Codoping of Eu3+ and Na+,” Chem. Mater.20(19), 6060–6067 (2008). [CrossRef]
  39. J. Liao, H. You, B. Qiu, H.-R. Wen, R. Hong, W. You, and Z. Xie, “Photoluminescence properties of NaGd(WO4)2:Eu3+ nanocrystalline prepared by hydrothermal method,” Curr. Appl. Phys.11(3), 503–507 (2011). [CrossRef]
  40. H. Wu, Y. Hu, W. Zhang, F. Kang, N. Li, and G. Ju, “Sol–gel synthesis of Eu3+ incorporated CaMoO4: the enhanced luminescence performance,” J. Sol-Gel Sci. Technol.62(2), 227–233 (2012). [CrossRef]
  41. M. G. Nikolić, D. J. Jovanović, and M. D. Dramićanin, “Temperature dependence of emission and lifetime in Eu3+- and Dy3+-doped GdVO4.,” Appl. Opt.52(8), 1716–1724 (2013). [CrossRef] [PubMed]
  42. S. A. Wade, “Temperature measurement using rare earth doped fibre fluorescence,” phD thesis (Victoria University, 1999).
  43. J. A. Capobianco, P. Kabro, F. S. Ermeneux, R. Moncorge, M. Bettinelli, and E. Cavalli, “Optical spectroscopy, fluorescence dynamics and crystal-field analysis of Er3+ in YVO4,” Chem. Phys.214(2-3), 329–340 (1997). [CrossRef]
  44. S. F. León-Luis, J. E. Muñoz-Santiuste, V. Lavín, and U. R. Rodríguez-Mendoza, “Optical pressure and temperature sensor based on the luminescence properties of Nd3+ ion in a gadolinium scandium gallium garnet crystal,” Opt. Express20(9), 10393–10398 (2012). [CrossRef] [PubMed]
  45. E. J. McLaurin, L. R. Bradshaw, and D. R. Gamelin, “Dual-Emitting Nanoscale Temperature Sensors,” Chem. Mater.25(8), 1283–1292 (2013). [CrossRef]
  46. W. Xu, X. Gao, L. Zheng, Z. Zhang, and W. Cao, “Short-wavelength upconversion emissions in Ho3+/Yb3+ codoped glass ceramic and the optical thermometry behavior,” Opt. Express20(16), 18127–18137 (2012). [CrossRef] [PubMed]
  47. M. G. Nikolić, V. Lojpur, Ž. Antić, and M. D. Dramićanin, “Thermographic properties of a Eu3+ -doped (Y0.75Gd0.25)2O3 nanophosphor under UV and x-ray excitation,” Phys. Scr.87(5), 055703 (2013). [CrossRef]
  48. C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale4(16), 4799–4829 (2012). [CrossRef] [PubMed]
  49. S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys.94(8), 4743–4756 (2003). [CrossRef]
  50. C. Eckert, C. Pflitsch, and B. Atakan, “Sol–gel deposition of multiply doped thermographic phosphor coatings Al2O3:(Cr3+, M3+) (M = Dy, Tm) for wide range surface temperature measurement application,” Prog. Org. Coat.67(2), 116–119 (2010). [CrossRef]
  51. Z. Boruc, M. Kaczkan, B. Fetlinski, S. Turczynski, and M. Malinowski, “Blue emissions in Dy3+ doped Y4Al2O9 crystals for temperature sensing,” Opt. Lett.37(24), 5214–5216 (2012). [CrossRef] [PubMed]
  52. P. Haro-González, I. R. Martín, L. L. Martín, S. F. León-Luis, C. Pérez-Rodríguez, and V. Lavín, “Characterization of Er3+ and Nd3+ doped Strontium Barium Niobate glass ceramic as temperature sensors,” Opt. Mater.33(5), 742–745 (2011). [CrossRef]
  53. D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale4(15), 4301–4326 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited