OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S3 — May. 5, 2014
  • pp: A973–A985

Enhanced light trapping in solar cells with a meta-mirror following generalized Snell’s law

M. Ryyan Khan, Xufeng Wang, Peter Bermel, and Muhammad A. Alam  »View Author Affiliations

Optics Express, Vol. 22, Issue S3, pp. A973-A985 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2788 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



As the performance of photovoltaic cells approaches the Shockley-Queisser limit, appropriate schemes are needed to minimize the losses without compromising the current performance. In this paper we propose a planar absorber-mirror light trapping structure where a conventional mirror is replaced by a meta-mirror with asymmetric light scattering properties. The meta-mirror is tailored to have reflection in asymmetric modes that stay outside the escape cone of the dielectric, hence trapping light with unit probability. Ideally, the meta-mirror can be designed to have such light trapping for any angle of incidence onto the absorber-mirror structure. We illustrate the concept by using a simple gap-plasmon meta-mirror. Even though the response of the mirror is non-ideal with the unwanted scattering modes reducing the light absorption, we observe an order of magnitude enhancement compared to single pass absorption in the absorber. The bandwidth of the enhancement can be matched with the range of wavelengths close to the solar cell absorber band-edge where improved light absorption is required.

© 2014 Optical Society of America

OCIS Codes
(040.5350) Detectors : Photovoltaic
(160.3918) Materials : Metamaterials

ToC Category:
Light Trapping for Photovoltaics

Original Manuscript: February 18, 2014
Revised Manuscript: March 28, 2014
Manuscript Accepted: March 31, 2014
Published: April 23, 2014

M. Ryyan Khan, Xufeng Wang, Peter Bermel, and Muhammad A. Alam, "Enhanced light trapping in solar cells with a meta-mirror following generalized Snell’s law," Opt. Express 22, A973-A985 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys.32(3), 510 (1961). [CrossRef]
  2. X. Wang, M. R. Khan, J. L. Gray, M. A. Alam, and M. S. Lundstrom, “Design of GaAs Solar Cells Operating Close to the Shockley-Queisser Limit,” IEEE J. Photovoltaics3(2), 737–744 (2013). [CrossRef]
  3. B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys.97(11), 114302 (2005). [CrossRef]
  4. M. M. Adachi, M. P. Anantram, and K. S. Karim, “Core-shell silicon nanowire solar cells,” Sci. Rep.3, 1546 (2013).
  5. M.-H. Hsu, P. Yu, J.-H. Huang, C.-H. Chang, C.-W. Wu, Y.-C. Cheng, and C.-W. Chu, “Balanced carrier transport in organic solar cells employing embedded indium-tin-oxide nanoelectrodes,” Appl. Phys. Lett.98(7), 073308 (2011). [CrossRef]
  6. B. Ray, M. R. Khan, C. Black, and M. A. Alam, “Nanostructured Electrodes for Organic Solar Cells: Analysis and Design Fundamentals,” IEEE. J. Photovoltaics3, 318–329 (2012).
  7. L. Hu and G. Chen, “Analysis of Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications,” Nano Lett.7(11), 3249–3252 (2007). [CrossRef] [PubMed]
  8. Q. G. Du, C. H. Kam, H. V. Demir, H. Y. Yu, and X. W. Sun, “Broadband absorption enhancement in randomly positioned silicon nanowire arrays for solar cell applications,” Opt. Lett.36(10), 1884–1886 (2011). [CrossRef] [PubMed]
  9. J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays,” Nano Lett.9(1), 279–282 (2009). [CrossRef] [PubMed]
  10. S. Basu Mallick, N. P. Sergeant, M. Agrawal, J.-Y. Lee, and P. Peumans, “Coherent Light Trapping in Thin-Film Photovoltaics,” MRS Bull.36(06), 453–460 (2011). [CrossRef]
  11. S. B. Mallick, M. Agrawal, and P. Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express18(6), 5691–5706 (2010). [CrossRef] [PubMed]
  12. S. Jeong, M. D. McGehee, and Y. Cui, “All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency,” Nat Commun4, 2950 (2013).
  13. V. Kochergin, L. Neely, C.-Y. Jao, and H. D. Robinson, “Aluminum plasmonic nanostructures for improved absorption in organic photovoltaic devices,” Appl. Phys. Lett.98(13), 133305 (2011). [CrossRef]
  14. J. Yang, J. You, C.-C. Chen, W.-C. Hsu, H. R. Tan, X. W. Zhang, Z. Hong, and Y. Yang, “Plasmonic Polymer Tandem Solar Cell,” ACS Nano5(8), 6210–6217 (2011). [CrossRef] [PubMed]
  15. X. Wang, M. R. Khan, M. Lundstrom, and P. Bermel, “Performance-limiting factors for GaAs-based single nanowire photovoltaics,” Opt. Express22(S2), A344–A358 (2014). [CrossRef]
  16. J. N. Munday and H. A. Atwater, “Large Integrated Absorption Enhancement in Plasmonic Solar Cells by Combining Metallic Gratings and Antireflection Coatings,” Nano Lett.11, 2195–2201 (2010).
  17. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  18. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A.107(41), 17491–17496 (2010). [CrossRef] [PubMed]
  19. M. A. Green, “Enhanced evanescent mode light trapping in organic solar cells and other low index optoelectronic devices,” Prog. Photovolt. Res. Appl.19(4), 473–477 (2011). [CrossRef]
  20. E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev.29(2), 300–305 (1982). [CrossRef]
  21. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am.72(7), 899–907 (1982). [CrossRef]
  22. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express18(S3Suppl 3), A366–A380 (2010). [CrossRef] [PubMed]
  23. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science334(6054), 333–337 (2011). [CrossRef] [PubMed]
  24. N. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J.-P. Tetienne, Z. Gaburro, and F. Capasso, “Flat Optics: Controlling Wavefronts With Optical Antenna Metasurfaces,” IEEE J. Sel. Top. Quantum Electron.19(3), 4700423 (2013). [CrossRef]
  25. X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband Light Bending with Plasmonic Nanoantennas,” Science335(6067), 427 (2012). [CrossRef] [PubMed]
  26. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar Photonics with Metasurfaces,” Science339(6125), 1232009 (2013). [CrossRef] [PubMed]
  27. S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-Efficiency Broadband Anomalous Reflection by Gradient Meta-Surfaces,” Nano Lett.12(12), 6223–6229 (2012). [CrossRef] [PubMed]
  28. S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater.11(5), 426–431 (2012). [CrossRef] [PubMed]
  29. A. Pors, O. Albrektsen, I. P. Radko, and S. I. Bozhevolnyi, “Gap plasmon-based metasurfaces for total control of reflected light,” Sci. Rep.3, 2155 (2013).
  30. Y. Luo, R. Zhao, A. I. Fernandez-Dominguez, S. A. Maier, and J. B. Pendry, “Harvesting light with transformation optics,” Sci. China Inf. Sci.56(12), 1–13 (2013). [CrossRef]
  31. S. Larouche and D. R. Smith, “Reconciliation of generalized refraction with diffraction theory,” Opt. Lett.37(12), 2391–2393 (2012). [CrossRef] [PubMed]
  32. V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun.183(10), 2233–2244 (2012). [CrossRef]
  33. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited