OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S3 — May. 5, 2014
  • pp: A992–A1000

Laterally assembled nanowires for ultrathin broadband solar absorbers

Kyung-Deok Song, Thomas J. Kempa, Hong-Gyu Park, and Sun-Kyung Kim  »View Author Affiliations

Optics Express, Vol. 22, Issue S3, pp. A992-A1000 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1245 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We studied optical resonances in laterally oriented Si nanowire arrays by conducting finite-difference time-domain simulations. Localized Fabry-Perot and whispering-gallery modes are supported within the cross section of each nanowire in the array and result in broadband light absorption. Comparison of a nanowire array with a single nanowire shows that the current density (JSC) is preserved for a range of nanowire morphologies. The JSC of a nanowire array depends on the spacing of its constituent nanowires, which indicates that both diffraction and optical antenna effects contribute to light absorption. Furthermore, a vertically stacked nanowire array exhibits significantly enhanced light absorption because of the emergence of coupled cavity-waveguide modes and the mitigation of a screening effect. With the assumption of unity internal quantum efficiency, the JSC of an 800-nm-thick cross-stacked nanowire array is 14.0 mA/cm2, which yields a ~60% enhancement compared with an equivalent bulk film absorber. These numerical results underpin a rational design strategy for ultrathin solar absorbers based on assembled nanowire cavities.

© 2014 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(140.4780) Lasers and laser optics : Optical resonators
(350.6050) Other areas of optics : Solar energy

ToC Category:
Light Trapping for Photovoltaics

Original Manuscript: March 17, 2014
Revised Manuscript: April 16, 2014
Manuscript Accepted: April 16, 2014
Published: April 29, 2014

Kyung-Deok Song, Thomas J. Kempa, Hong-Gyu Park, and Sun-Kyung Kim, "Laterally assembled nanowires for ultrathin broadband solar absorbers," Opt. Express 22, A992-A1000 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003). [CrossRef] [PubMed]
  2. C. Hahn, Z. Zhang, A. Fu, C. H. Wu, Y. J. Hwang, D. J. Gargas, and P. Yang, “Epitaxial Growth of InGaN Nanowire Arrays for Light Emitting Diodes,” ACS Nano 5(5), 3970–3976 (2011). [CrossRef] [PubMed]
  3. Y.-S. No, J. H. Choi, H.-S. Ee, M.-S. Hwang, K.-Y. Jeong, E.-K. Lee, M.-K. Seo, S.-H. Kwon, and H.-G. Park, “A Double-Strip Plasmonic Waveguide Coupled to an Electrically Driven Nanowire LED,” Nano Lett. 13(2), 772–776 (2013). [CrossRef] [PubMed]
  4. P. Fan, K. C. Y. Huang, L. Cao, and M. L. Brongersma, “Redesigning Photodetector Electrodes as an Optical Antenna,” Nano Lett. 13(2), 392–396 (2013). [CrossRef] [PubMed]
  5. J. Tang, Z. Huo, S. Brittman, H. Gao, and P. Yang, “Solution-Processed Core-Shell Nanowires for Efficient Photovoltaic Cells,” Nat. Nanotechnol. 6(9), 568–572 (2011). [CrossRef] [PubMed]
  6. B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial Silicon Nanowires as Solar Cells and Nanoelectronic Power Sources,” Nature 449(7164), 885–889 (2007). [CrossRef] [PubMed]
  7. T. J. Kempa, J. F. Cahoon, S.-K. Kim, R. W. Day, D. C. Bell, H.-G. Park, and C. M. Lieber, “Coaxial Multishell Nanowires with High-Quality Electronic Interfaces and Tunable Optical Cavities for Ultrathin Photovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 109(5), 1407–1412 (2012). [CrossRef] [PubMed]
  8. S.-K. Kim, R. W. Day, J. F. Cahoon, T. J. Kempa, K.-D. Song, H.-G. Park, and C. M. Lieber, “Tuning Light Absorption in Core/Shell Silicon Nanowire Photovoltaic Devices through Morphological Design,” Nano Lett. 12(9), 4971–4976 (2012). [CrossRef] [PubMed]
  9. J. D. Christesen, X. Zhang, C. W. Pinion, T. A. Celano, C. J. Flynn, and J. F. Cahoon, “Design principles for photovoltaic devices based on Si nanowires with axial or radial p-n junctions,” Nano Lett. 12(11), 6024–6029 (2012). [CrossRef] [PubMed]
  10. S. W. Boettcher, J. M. Spurgeon, M. C. Putnam, E. L. Warren, D. B. Turner-Evans, M. D. Kelzenberg, J. R. Maiolo, H. A. Atwater, and N. S. Lewis, “Energy-Conversion Properties of Vapor-Liquid-Solid-Grown Silicon Wire-Array Photocathodes,” Science 327(5962), 185–187 (2010). [CrossRef] [PubMed]
  11. G. Mariani, P.-S. Wong, A. M. Katzenmeyer, F. Léonard, J. Shapiro, and D. L. Huffaker, “Patterned Radial GaAs Nanopillar Solar Cells,” Nano Lett. 11(6), 2490–2494 (2011). [CrossRef] [PubMed]
  12. Z. Fan, H. Razavi, J.-W. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-Dimensional Nanopillar-Array Photovoltaics on Low-Cost and Flexible Substrates,” Nat. Mater. 8(8), 648–653 (2009). [CrossRef] [PubMed]
  13. P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A. Fontcuberta i Morral, “Single-nanowire solar cells beyond the Shockley–Queisser limit,” Nat. Photonics 7(4), 306–310 (2013). [CrossRef]
  14. B. Cho, J. Bareno, Y. L. Foo, S. Hong, T. Spila, I. Petrov, and J. E. Greene, “Phosphorus Incorporation during Si(001): P Gas-source Molecular Beam Epitaxy: Effects on Growth Kinetics and Surface Morphology,” J. Appl. Phys. 103(12), 123530 (2008). [CrossRef]
  15. M. C. Plante and R. R. Lapierre, “Control of GaAs nanowire morphology and crystal structure,” Nanotechnology 19(49), 495603 (2008). [CrossRef] [PubMed]
  16. T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “Complete composition tunability of InGaN Nanowires using a combinatorial approach,” Nat. Mater. 6(12), 951–956 (2007). [CrossRef] [PubMed]
  17. L.-F. Cui, R. Ruffo, C. K. Chan, H. Peng, and Y. Cui, “Crystalline-Amorphous Core-Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes,” Nano Lett. 9(1), 491–495 (2009). [CrossRef] [PubMed]
  18. M. M. Adachi, M. P. Anantram, and K. S. Karim, “Optical Properties of Crystalline-Amorphous Core-Shell Silicon Nanowires,” Nano Lett. 10(10), 4093–4098 (2010). [CrossRef] [PubMed]
  19. G. Brönstrup, N. Jahr, C. Leiterer, A. Csáki, W. Fritzsche, and S. Christiansen, “Optical Properties of Individual Silicon Nanowires for Photonic Devices,” ACS Nano 4(12), 7113–7122 (2010). [CrossRef] [PubMed]
  20. G. Brönstrup, C. Leiterer, N. Jahr, C. Gutsche, A. Lysov, I. Regolin, W. Prost, F. J. Tegude, W. Fritzsche, and S. Christiansen, “A Precise Optical Determination of Nanoscale Diameters of Semiconductor Nanowires,” Nanotechnology 22(38), 385201 (2011). [CrossRef] [PubMed]
  21. F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-Quantum-Well Nanowire Heterostructures for Wavelength-Controlled Lasers,” Nat. Mater. 7(9), 701–706 (2008). [CrossRef] [PubMed]
  22. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon Lasers at Deep Subwavelength Scale,” Nature 461(7264), 629–632 (2009). [CrossRef] [PubMed]
  23. M. Khorasaninejad and S. S. Saini, “Silicon nanowire optical waveguide (SNOW),” Opt. Express 18(22), 23442–23457 (2010). [CrossRef] [PubMed]
  24. F. Qian, S. Gradecak, Y. Li, C. Y. Wen, and C. M. Lieber, “Core/Multishell Nanowire Heterostructures as Multicolor, High-Efficiency Light-Emitting Diodes,” Nano Lett. 5(11), 2287–2291 (2005). [CrossRef] [PubMed]
  25. S.-K. Kim, K.-D. Song, T. J. Kempa, R. W. Day, C. M. Lieber, and H.-G. Park, “Design of Nanowire Optical Cavities as Efficient Photon Absorbers,” ACS Nano140313143802002 (2014), doi:. [CrossRef]
  26. G. Chen, J. Wu, Q. Lu, H. R. Gutierrez, Q. Xiong, M. E. Pellen, J. S. Petko, D. H. Werner, and P. C. Eklund, “Optical Antenna Effect in Semiconducting Nanowires,” Nano Lett. 8(5), 1341–1346 (2008). [CrossRef] [PubMed]
  27. L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor Nanowire Optical Antenna Solar Absorbers,” Nano Lett. 10(2), 439–445 (2010). [CrossRef] [PubMed]
  28. J. Yao, H. Yan, and C. M. Lieber, “A nanoscale combing technique for the large-scale assembly of highly aligned nanowires,” Nat. Nanotechnol. 8(5), 329–335 (2013). [CrossRef] [PubMed]
  29. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Norwood, MA: Artech House, 2005).
  30. D. R. Lide, CRC Handbook of Chemistry and Physics, 88th ed. (CRC Press, 2008).
  31. K. Soderstrom, F.-J. Haug, J. Escarre, O. Cubero, and C. Ballif, “Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96(21), 213508 (2010). [CrossRef]
  32. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010). [CrossRef] [PubMed]
  33. J. Kupec, R. L. Stoop, and B. Witzigmann, “Light absorption and emission in nanowire array solar cells,” Opt. Express 18(26), 27589–27605 (2010). [CrossRef] [PubMed]
  34. J. Kupec and B. Witzigmann, “Dispersion, Wave Propagation and Efficiency Analysis of Nanowire Solar Cells,” Opt. Express 17(12), 10399–10410 (2009). [CrossRef] [PubMed]
  35. S.-K. Kim, K.-D. Song, and H.-G. Park, “Design of input couplers for efficient silicon thin film solar absorbers,” Opt. Express 20(S6), A997–A1004 (2012). [CrossRef]
  36. M. M. Hossain, G. Chen, B. Jia, X.-H. Wang, and M. Gu, “Optimization of enhanced absorption in 3D-woodpile metallic photonic crystals,” Opt. Express 18(9), 9048–9054 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited