OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S4 — Jun. 30, 2014
  • pp: A1023–A1028

Enhancing the driving field for plasmonic nanoparticles in thin-film solar cells

Rudi Santbergen, Hairen Tan, Miro Zeman, and Arno H. M. Smets  »View Author Affiliations

Optics Express, Vol. 22, Issue S4, pp. A1023-A1028 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2574 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The scattering cross-section of a plasmonic nanoparticle is proportional to the intensity of the electric field that drives the plasmon resonance. In this work we determine the driving field pattern throughout a complete thin-film silicon solar cell. Our simulations reveal that by tuning of the thicknesses of silicon and transparent conductive oxide layers the driving field intensity experienced by an embedded plasmonic nanoparticle can be enhanced up to a factor of 14. This new insight opens the route towards more efficient plasmonic light trapping in thin-film solar cells.

© 2014 Optical Society of America

OCIS Codes
(260.3160) Physical optics : Interference
(350.6050) Other areas of optics : Solar energy
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Light Trapping for Photovoltaics

Original Manuscript: March 28, 2014
Revised Manuscript: April 29, 2014
Manuscript Accepted: April 29, 2014
Published: May 7, 2014

Rudi Santbergen, Hairen Tan, Miro Zeman, and Arno H. M. Smets, "Enhancing the driving field for plasmonic nanoparticles in thin-film solar cells," Opt. Express 22, A1023-A1028 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Zeman, R. A. C. M. M. van Swaaij, J. W. Metselaar, and R. E. I. Schropp, “Optical modelling of a-Si:H solar cells with rough interfaces: effect of back contact and interface roughness,” J. Appl. Phys. 88(11), 6436–6443 (2000). [CrossRef]
  2. H. W. Deckman, C. R. Wronski, H. Witzke, and E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42(11), 968–970 (1983). [CrossRef]
  3. F. Leblanc, J. Perrin, and J. Schmitt, “Numerical modeling of the optical properties of hydrogenated amorphous-silicon-based p-i-n solar cells deposited on rough transparent conducting oxide substrates,” J. Appl. Phys. 75(2), 1074–1087 (1994). [CrossRef]
  4. H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69(16), 2327–2329 (1996). [CrossRef]
  5. H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73(26), 3815–3817 (1998). [CrossRef]
  6. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007). [CrossRef]
  7. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008). [CrossRef] [PubMed]
  8. R. Santbergen, R. Liang, and M. Zeman, “A-Si:H solar cells with embedded silver nanoparticles,” in Proceedings of the 35th IEEE Photovoltaic Specialists Conference (2010), pp. 748–753. [CrossRef]
  9. E. Moulin, J. Sukmanowski, M. Schulte, A. Gordijn, F. X. Royer, and H. Stiebig, “Thin-film silicon solar cells with integrated silver nanoparticles,” Thin Solid Films 516(20), 6813–6817 (2008). [CrossRef]
  10. F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105(11), 114310 (2009). [CrossRef]
  11. H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12(8), 4070–4076 (2012). [CrossRef] [PubMed]
  12. H. Tan, L. Sivec, B. Yan, R. Santbergen, M. Zeman, and A. H. M. Smets, “Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption,” Appl. Phys. Lett. 102(15), 153902 (2013). [CrossRef]
  13. H. R. Stuart and D. G. Hall, “Enhanced dipole-dipole interaction between elementary radiators near a surface,” Phys. Rev. Lett. 80(25), 5663–5666 (1998). [CrossRef]
  14. P. Johansson, “Light scattering from disordered overlayers of metallic nanoparticles,” Phys. Rev. B 64(16), 165405 (2001). [CrossRef]
  15. F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 033113 (2010). [CrossRef]
  16. R. S. A. Sesuraj, T. L. Temple, and D. M. Bagnall, “Diffuse reflectance and absorption characterization of a plasmonic back reflector for application in thin film Si solar cells,” in Proceedings of the MRS Fall Meeting 1391 (2011), pp. 33–38.
  17. R. Santbergen, H. Tan, A. H. M. Smets, and M. Zeman, “Driving field optimization of plasmonic back reflector for thin-film silicon solar cells,” in Renewable Energy and the Environment Optics and Photonics Congress, OSA Technical Digest (online) (Optical Society of America, 2012), paper JM4B.3. [CrossRef]
  18. E. Wang, T. P. White, and K. R. Catchpole, “Resonant enhancement of dielectric and metal nanoparticle arrays for light trapping in solar cells,” Opt. Express 20(12), 13226–13237 (2012). [CrossRef] [PubMed]
  19. R. S. A. Sesuraj, T. L. Temple, and D. M. Bagnall, “Tunable low-loss plasmonic mirror for diffuse optical scattering,” Appl. Phys. Express 5(12), 125205 (2012). [CrossRef]
  20. R. S. A. Sesuraj, T. L. Temple, and D. M. Bagnall, “Optical characterisation of a spectrally tunable plasmonic reflector for application in thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 111, 23–30 (2013). [CrossRef]
  21. R. Santbergen, A. H. M. Smets, and M. Zeman, “Optical model for multilayer structures with coherent, partly coherent and incoherent layers,” Opt. Express 21(S2Suppl 2), A262–A267 (2013). [CrossRef] [PubMed]
  22. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  23. R. Santbergen, T. L. Temple, R. Liang, A. H. M. Smets, R. A. C. M. M. van Swaaij, and M. Zeman, “Application of plasmonic silver island films in thin-film silicon solar cells,” J. Opt. 14(2), 024010 (2012). [CrossRef]
  24. J. Mertz, “Radiative absorption, fluorescence, and scattering of a classical dipole near a lossless interface: a unified description,” J. Opt. Soc. Am. B 17(11), 1906–1913 (2000). [CrossRef]
  25. H. Tan, R. Santbergen, G. Yang, A. H. M. Smets, and M. Zeman, “Combined optical and electrical design of plasmonic back reflector for high-efficiency thin-film silicon solar cells,” IEEE J. Photovolt. 3(1), 53–58 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited