OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S4 — Jun. 30, 2014
  • pp: A1059–A1070

Broadband photocurrent enhancement in a-Si:H solar cells with plasmonic back reflectors

Seweryn Morawiec, Manuel J. Mendes, Sergej A. Filonovich, Tiago Mateus, Salvatore Mirabella, Hugo Águas, Isabel Ferreira, Francesca Simone, Elvira Fortunato, Rodrigo Martins, Francesco Priolo, and Isodiana Crupi  »View Author Affiliations


Optics Express, Vol. 22, Issue S4, pp. A1059-A1070 (2014)
http://dx.doi.org/10.1364/OE.22.0A1059


View Full Text Article

Acrobat PDF (1882 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Plasmonic light trapping in thin film silicon solar cells is a promising route to achieve high efficiency with reduced volumes of semiconductor material. In this paper, we study the enhancement in the opto-electronic performance of thin a-Si:H solar cells due to the light scattering effects of plasmonic back reflectors (PBRs), composed of self-assembled silver nanoparticles (NPs), incorporated on the cells’ rear contact. The optical properties of the PBRs are investigated according to the morphology of the NPs, which can be tuned by the fabrication parameters. By analyzing sets of solar cells built on distinct PBRs we show that the photocurrent enhancement achieved in the a-Si:H light trapping window (600 – 800 nm) stays in linear relation with the PBRs diffuse reflection. The best-performing PBRs allow a pronounced broadband photocurrent enhancement in the cells which is attributed not only to the plasmon-assisted light scattering from the NPs but also to the front surface texture originated from the conformal growth of the cell material over the particles. As a result, remarkably high values of Jsc and Voc are achieved in comparison to those previously reported in the literature for the same type of devices.

© 2014 Optical Society of America

OCIS Codes
(290.5850) Scattering : Scattering, particles
(350.6050) Other areas of optics : Solar energy
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Light Trapping for Photovoltaics

History
Original Manuscript: February 19, 2014
Revised Manuscript: April 8, 2014
Manuscript Accepted: April 8, 2014
Published: May 27, 2014

Citation
Seweryn Morawiec, Manuel J. Mendes, Sergej A. Filonovich, Tiago Mateus, Salvatore Mirabella, Hugo Águas, Isabel Ferreira, Francesca Simone, Elvira Fortunato, Rodrigo Martins, Francesco Priolo, and Isodiana Crupi, "Broadband photocurrent enhancement in a-Si:H solar cells with plasmonic back reflectors," Opt. Express 22, A1059-A1070 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-S4-A1059


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  2. F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol.9(1), 19–32 (2014). [CrossRef] [PubMed]
  3. J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy77(6), 917–930 (2004). [CrossRef]
  4. K. Söderström, F. J. Haug, J. Escarré, C. Pahud, R. Biron, and C. Ballif, “Highly reflective nanotextured sputtered silver back reflector for flexible high-efficiency n–i–p thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells95(12), 3585–3591 (2011). [CrossRef]
  5. M. J. Mendes, S. Morawiec, F. Simone, F. Priolo, and I. Crupi, “Colloidal plasmonic back reflectors for light trapping in solar cells,” Nanoscale (2014), doi:
  6. Z. Ouyang, X. Zhao, S. Varlamov, Y. Tao, J. Wong, and S. Pillai, “Nanoparticle-enhanced light trapping in thin-film silicon solar cells,” Prog. Photovolt. Res. Appl.19(8), 917–926 (2011). [CrossRef]
  7. V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized Spatial Correlations for Broadband Light Trapping Nanopatterns in High Efficiency Ultrathin Film a-Si:H Solar Cells,” Nano Lett.11(10), 4239–4245 (2011). [CrossRef] [PubMed]
  8. J. Park, J. Rao, T. Kim, and S. Varlamov, “Highest efficiency plasmonic polycrystalline silicon thin-film solar cells by optimization of plasmonic nanoparticle fabrication,” Plasmonics8(2), 1209–1219 (2013). [CrossRef]
  9. D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett.12(1), 214–218 (2012). [CrossRef] [PubMed]
  10. C. V. Thompson, “Solid-state dewetting of thin films,” Annu. Rev. Mater. Res.42(1), 399–434 (2012). [CrossRef]
  11. S. Morawiec, M. J. Mendes, S. Mirabella, F. Simone, F. Priolo, and I. Crupi, “Self-assembled silver nanoparticles for plasmon-enhanced solar cell back reflectors: correlation between structural and optical properties,” Nanotechnology24(26), 265601 (2013). [CrossRef] [PubMed]
  12. N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys.75(3), 036501 (2012). [CrossRef] [PubMed]
  13. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008). [CrossRef]
  14. F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express19(25), 25230–25241 (2011). [CrossRef] [PubMed]
  15. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007). [CrossRef]
  16. M. J. Mendes, A. Luque, I. Tobías, and A. Martí, “Plasmonic light enhancement in the near-field of metallic nanospheroids for application in intermediate band solar cells,” Appl. Phys. Lett.95(7), 071105 (2009). [CrossRef]
  17. C. Eminian, F. J. Haug, O. Cubero, X. Niquille, and C. Ballif, “Photocurrent enhancement in thin film amorphous silicon solar cells with silver nanoparticles,” Prog. Photovolt. Res. Appl.19(3), 260–265 (2011). [CrossRef]
  18. H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic Light Trapping in Thin-film Silicon Solar Cells with Improved Self-Assembled Silver Nanoparticles,” Nano Lett.12(8), 4070–4076 (2012). [CrossRef] [PubMed]
  19. H. Tan, R. Santbergen, Y. Guangtao, A. H. M. Smets, and M. Zeman, “Combined optical and electrical design of plasmonic back reflector for high-efficiency thin-film silicon solar cells,” Phot. IEEE J.3, 53–58 (2013).
  20. A. Araújo, R. Barros, T. Mateus, D. Gaspar, N. Neves, A. Vicente, S. A. Filonovich, P. Barquinha, E. Fortunato, A. M. Ferraria, A. M. B. Rego, A. Bicho, H. Águas, and R. Martins, “Role of a disperse carbon interlayer on the performances of tandem a-Si solar cells,” Sci. Technol. Adv. Mater.14(4), 045009 (2013). [CrossRef]
  21. R. Martins, L. Raniero, L. Pereira, D. Costa, H. Águas, S. Pereira, L. Silva, A. Gonçalves, I. Ferreira, and E. Fortunato, “Nanostructured silicon and its application to solar cells, position sensors and thin film transistors,” Philos. Mag.89, 2699–2721 (2009).
  22. R. Martins, P. Almeida, P. Barquinha, L. Pereira, A. Pimentel, I. Ferreira, and E. Fortunato, “Electron transport and optical characteristics in amorphous indium zinc oxide films,” J. Non-Cryst. Solids352(9-20), 1471–1474 (2006). [CrossRef]
  23. P. Barquinha, G. Gonçalves, L. Pereira, R. Martins, and E. Fortunato, “Effect of annealing temperature on the properties of IZO films and IZO based transparent TFTs,” Thin Solid Films515(24), 8450–8454 (2007). [CrossRef]
  24. R. S. A. Sesuraj, T. L. Temple, and D. M. Bagnall, “Optical characterisation of a spectrally tunable plasmonic reflector for application in thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells111, 23–30 (2013). [CrossRef]
  25. T. L. Temple and D. M. Bagnall, “Broadband scattering of the solar spectrum by spherical metal nanoparticles,” Prog. Photovolt. Res. Appl.21, 600–611 (2013).
  26. M. J. Mendes, E. Hernández, E. López, P. García-Linares, I. Ramiro, I. Artacho, E. Antolín, I. Tobías, A. Martí, and A. Luque, “Self-organized colloidal quantum dots and metal nanoparticles for plasmon-enhanced intermediate-band solar cells,” Nanotechnology24(34), 345402 (2013). [CrossRef] [PubMed]
  27. C. Pahud, O. Isabella, A. Naqavi, F.-J. Haug, M. Zeman, H. P. Herzig, and C. Ballif, “Plasmonic silicon solar cells: impact of material quality and geometry,” Opt. Express21(S5), A786–A797 (2013). [CrossRef] [PubMed]
  28. H. Sai, K. Saito, and M. Kondo, “Enhanced photocurrent and conversion efficiency in thin-film microcrystalline silicon solar cells using periodically textured back reflectors with hexagonal dimple arrays,” Appl. Phys. Lett.101(17), 173901 (2012). [CrossRef]
  29. J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10(6), 1979–1984 (2010). [CrossRef] [PubMed]
  30. P. Kowalczewski, M. Liscidini, and L. C. Andreani, “Light trapping in thin-film solar cells with randomly rough and hybrid textures,” Opt. Express21(S5), A808–A820 (2013). [CrossRef] [PubMed]
  31. S. Calnan and A. N. Tiwari, “High mobility transparent conducting oxides for thin film solar cells,” Thin Solid Films518(7), 1839–1849 (2010). [CrossRef]
  32. J. A. Thornton, “High Rate Thick Film Growth,” Annu. Rev. Mater. Sci.7(1), 239–260 (1977). [CrossRef]
  33. M. Adamov, B. Perović, and T. Nenadović, “Electrical and structural properties of thin gold films obtained by vacuum evaporation and sputtering,” Thin Solid Films24(1), 89–100 (1974). [CrossRef]
  34. D. Depla, S. Mahieu, and J. E. Greene, “Chapter 5 - Sputter Deposition Processes,” in Handbook of Deposition Technologies for Films and Coatings (Third Edition), P. M. Martin, ed. (William Andrew Publishing, 2010), pp. 253–296.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited