OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S4 — Jun. 30, 2014
  • pp: A1101–A1111

Optical property of blended plasmonic nanofluid based on gold nanorods

Jongwook Jeon, Sunho Park, and Bong Jae Lee  »View Author Affiliations

Optics Express, Vol. 22, Issue S4, pp. A1101-A1111 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3596 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Present work experimentally characterizes the optical property of blended plasmonic nanofuids based on gold nanorod (AuNR) with different aspect ratios. The existence of localized surface plasmon resonance was verified from measured extinction coefficient of three AuNR solutions, and spectral tunability of AuNR nanofluid was successfully demonstrated in the visible and near-infrared spectral region. The representative aspect ratio and volume fraction of each sample were then calculated from the relation between extinction coefficient and extinction efficiency, which leads to the design of a blended plasmonic nanofluid having broad-band absorption characteristic in the visible and near-infrared spectral region. The results obtained from this study will facilitate the development of a novel volumetric solar thermal collectors using plasmonic nanofluids.

© 2014 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(240.5420) Optics at surfaces : Polaritons
(350.6050) Other areas of optics : Solar energy

ToC Category:

Original Manuscript: April 7, 2014
Revised Manuscript: May 18, 2014
Manuscript Accepted: May 19, 2014
Published: June 2, 2014

Jongwook Jeon, Sunho Park, and Bong Jae Lee, "Optical property of blended plasmonic nanofluid based on gold nanorods," Opt. Express 22, A1101-A1111 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  2. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phy. Rep. 408, 131–134 (2005). [CrossRef]
  3. A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1, 84–90 (2006). [CrossRef]
  4. H. H. Richardson, Z. N. Hickman, A. O. Govorov, A. C. Thomas, W. Zhang, and M. E. Kordesch, “Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting,” Nano Lett. 6, 783–788 (2006). [CrossRef] [PubMed]
  5. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particle (WILEY-VCH, 2004).
  6. E. Sani, S. Barison, C. Pagura, L. Mercatelli, P. Sansoni, D. Fontani, D. Jafrancesco, and F. Francini, “Carbon nanohorns-based nanofluids as direct sunlight absorbers,” Opt. Express 18, 5179–5187 (2010). [CrossRef] [PubMed]
  7. E. Sani, L. Mercatelli, S. Barison, C. Pagura, F. Agresti, L. Colla, and P. Sansoni, “Potential of carbon nanohorn-based suspensions for solar thermal collectors,” Sol. Energy Mater. Sol. Cells 95, 2994–3000 (2011). [CrossRef]
  8. H. Tyagi, P. E. Phelan, and R. Prasher, “Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector,” ASME J. Sol. Energy Eng. 131, 041004 (2009). [CrossRef]
  9. V. Khullar, H. Tyagi, P. E. Phelan, T. P. Otanicar, H. Singh, and R. A. Taylor, “Solar energy harvesting using nanofluids-based concentrating solar collector,” J. Nanotech. Eng. Med. 3, 031003 (2012). [CrossRef]
  10. B. J. Lee, K. Park, T. Walsh, and L. Xu, “Radiative heat transfer analysis in plasmonic nanofluids for direct solar thermal absorption,” ASME J. Sol. Energy Eng. 134, 021009 (2012). [CrossRef]
  11. M. F. Modest, Radiative Heat Transfer (Academic, 2003).
  12. R. A. Taylor, T. P. Otanicar, Y. Herukerrupu, F. Bremond, G. Rosengarten, E. R. Hawkes, X. Jian, and S. Coulombe, “Feasibility of nanofluid-based optical filter,” Appl. Opt. 52, 1413–1422 (2013). [CrossRef] [PubMed]
  13. Y.-Y. Yu, S.-S. Chang, C.-L. Lee, and C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B 101, 6661–6664 (1997). [CrossRef]
  14. H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6, 827–832 (2006). [CrossRef] [PubMed]
  15. R. Bardhan, N. K. Gardy, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshell and nanorods,” ACS Nano 3, 744–752 (2009). [CrossRef] [PubMed]
  16. N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template,” Adv. Mater. 13, 1389–1393 (2001). [CrossRef]
  17. S. Park, N. Sinha, and K. Hamad-Schifferli, “Effective size and zeta potential of nanorods by Ferguson analysis,” Langmuir 26, 13071–13075 (2010). [CrossRef] [PubMed]
  18. L. Gou and C. J. Murphy, “Fine-tuning the shape of gold nanorods,” Chem. Mater. 17, 3668–3672 (2005). [CrossRef]
  19. B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15, 1957–1962 (2003). [CrossRef]
  20. M. D. Abramoff, P. J. Magelhaes, and S. J. Ram, “Image processing with ImageJ,” Biophotonics Int. 11, 36–43 (2004).
  21. ASTM, “Reference solar spectral irradiance: Air mass 1.5”, http://rredc.nrel.gov/solar/spectra/am1.5
  22. M. C. J. Large, D. R. McKenzie, and M. I. Large, “Incoherent reflection processes: a discrete approach,” Opt. Commun. 128, 307–314 (1996). [CrossRef]
  23. S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999). [CrossRef]
  24. E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Matter. 16, 1685–1706 (2004). [CrossRef]
  25. A. Mohammadi, F. Kaminski, V. Sandoghdar, and M. Agio, “Spheroidal nanoparticles as nanoantennas for fluorescence enhancement,” Int. J. Nanotechnol 6, 902–914 (2009). [CrossRef]
  26. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994). [CrossRef]
  27. D. E. Palik, Handbook of optical constants of solids (Academic Press, London, 1985).
  28. L. P. Wang, B. J. Lee, X. J. Wang, and Z. M. Zhang, “Spatial and temporal coherence of thermal radiation in asymmetric Fabry-Perot resonance cavities,” Int. J. Heat Mass Transfer 52, 3024–3031 (2009). [CrossRef]
  29. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape and composition: applications in biological imaging and biomedicine,” J. Phy. Chem. B 110, 7238–7248 (2006). [CrossRef]
  30. H. Petrova, J. P. Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzan, and P. Mulvaney, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys. 8, 814–821 (2006). [CrossRef] [PubMed]
  31. A. Wijaya and K. Hamad-Schifferli, “Ligand customization and DNA functionalization of gold nanorods via round-trip phase transfer ligand exchange,” Langmuir 24, 9966–9969 (2008). [CrossRef] [PubMed]
  32. M. B. Mohamed, K. Z. Ismail, S. Link, and M. A. El-Sayed, “Thermal reshaping of gold nanorods in micelles,” J. Phys. Chem. B 102, 9370–9374 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited