OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S4 — Jun. 30, 2014
  • pp: A1128–A1136

Periodic anti-ring back reflectors for hydrogenated amorphous silicon thin-film solar cells

Po-Yuan Chen, Hui-Hsin Hsiao, Chung-I Ho, Chi-Chih Ho, Wei-Li Lee, Hung-Chun Chang, Si-Chen Lee, Jian-Zhang Chen, and I-Chun Cheng  »View Author Affiliations

Optics Express, Vol. 22, Issue S4, pp. A1128-A1136 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3102 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Large and periodic anti-ring arrays are fabricated by using a monolayer of polymer/nanosphere hybrid technique and applied as back reflectors in substrate-type hydrogenated amorphous silicon (a-Si:H) thin-film solar cells. The structure of each anti-ring comprises a nanodome centered inside a nanohole. The excitation of Bloch wave surface plasmon polaritons is observed in the Ag-coated anti-ring arrays. The nanodomes of the anti-ring arrays turn out to enhance large-angle light scattering and increase the effective optical path in the solar cell. The resulting efficiency of an ultrathin a-Si:H (thickness: 150 nm) solar cell is enhanced by 39% compared to that with a flat back reflector and by 13% compared to that with a nanohole back reflector.

© 2014 Optical Society of America

OCIS Codes
(040.5350) Detectors : Photovoltaic
(220.4241) Optical design and fabrication : Nanostructure fabrication
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Light Trapping for Photovoltaics

Original Manuscript: April 3, 2014
Revised Manuscript: May 21, 2014
Manuscript Accepted: May 21, 2014
Published: June 2, 2014

Po-Yuan Chen, Hui-Hsin Hsiao, Chung-I Ho, Chi-Chih Ho, Wei-Li Lee, Hung-Chun Chang, Si-Chen Lee, Jian-Zhang Chen, and I-Chun Cheng, "Periodic anti-ring back reflectors for hydrogenated amorphous silicon thin-film solar cells," Opt. Express 22, A1128-A1136 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, “Photovoltaic technology: the case for thin-film solar cells,” Science 285(5428), 692–698 (1999). [CrossRef] [PubMed]
  2. H. W. Deckman, C. R. Wronski, H. Witzke, and E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42(11), 968–970 (1983). [CrossRef]
  3. T. Tiedje, B. Abeles, J. M. Cebulka, and J. Pelz, “Photoconductivity enhancement by light trapping in rough amorphous silicon,” Appl. Phys. Lett. 42(8), 712–714 (1983). [CrossRef]
  4. K. Sato, Y. Gotoh, Y. Wakayama, Y. Hayasahi, K. Adachi, and H. Nishimura, “Highly textured SnO2: F TCO films for a-Si solar cells,” Rep. Res. Lab. Asahi Glass Co. Ltd. 42, 129–137 (1992).
  5. J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004). [CrossRef]
  6. T. Söderström, F. J. Haug, X. Niquille, and C. Ballif, “TCOs for nip thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 17(3), 165–176 (2009). [CrossRef]
  7. H. Sai, K. Saito, and M. Kondo, “Investigation of textured back reflectors with periodic honeycomb patterns in thin-film silicon solar cells for improved photovoltaic performance,” IEEE J. Photovolt. 3(1), 5–10 (2013). [CrossRef]
  8. V. E. Ferry, M. A. Verschuuren, H. B. Li, E. Verhagen, R. J. Walters, R. E. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18(S2Suppl 2), A237–A245 (2010). [CrossRef] [PubMed]
  9. V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011). [CrossRef] [PubMed]
  10. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009). [CrossRef]
  11. J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010). [CrossRef] [PubMed]
  12. C. M. Hsu, C. Battaglia, C. Pahud, Z. C. Ruan, F. J. Haug, S. H. Fan, C. Ballif, and Y. Cui, “High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector,” Adv. Energy Mater. 2(6), 628–633 (2012). [CrossRef]
  13. W.-C. Tu, Y.-T. Chang, C.-H. Yang, D.-J. Yeh, C.-I. Ho, C.-Y. Hsueh, and S.-C. Lee, “Hydrogenated amorphous silicon solar cell on glass substrate patterned by hexagonal nanocylinder array,” Appl. Phys. Lett. 97(19), 193109 (2010). [CrossRef]
  14. C.-C. Ho, P.-Y. Chen, K.-H. Lin, W.-T. Juan, and W.-L. Lee, “Fabrication of monolayer of polymer/nanospheres hybrid at a water-air interface,” ACS Appl. Mater. Interfaces 3(2), 204–208 (2011). [CrossRef] [PubMed]
  15. C.-I. Ho, D.-J. Yeh, V.-C. Su, C.-H. Yang, P.-C. Yang, M.-Y. Pu, C.-H. Kuan, I.-C. Cheng, and S.-C. Lee, “Plasmonic multilayer nanoparticles enhanced photocurrent in thin film hydrogenated amorphous silicon solar cells,” J. Appl. Phys. 112(2), 023113 (2012). [CrossRef]
  16. A. S. Hall, S. A. Friesen, and T. E. Mallouk, “Wafer-scale fabrication of plasmonic crystals from patterned silicon templates prepared by nanosphere lithography,” Nano Lett. 13(6), 2623–2627 (2013). [CrossRef] [PubMed]
  17. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007). [CrossRef] [PubMed]
  18. H.-H. Hsiao, H.-F. Huang, S.-C. Lee, and H.-C. Chang, “Investigating far-field spectra and near-field features of extraordinary optical transmission through periodic U- to H-shaped apertures,” IEEE Photon. J. 4(2), 387–398 (2012). [CrossRef]
  19. Z. T. Ma and K. Ogusu, “FDTD analysis of 2D triangular-lattice photonic crystals with arbitrary-shape inclusions based on unit cell transformation,” Opt. Commun. 282(7), 1322–1325 (2009). [CrossRef]
  20. E. D. Palik, Handbook of Optical Constants of Solids (Academic press, 1985).
  21. S. C. Hagness and A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).
  22. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010). [CrossRef] [PubMed]
  23. S. A. Maier, Plasmonics: Fundamentals and Applications: Fundamentals and Applications, 1st ed. (Springer, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited