OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S4 — Jun. 30, 2014
  • pp: A1137–A1144

Design of broadband omnidirectional antireflection coatings using ant colony algorithm

X. Guo, H. Y. Zhou, S. Guo, X. X. Luan, W. K. Cui, Y. F. Ma, and L. Shi  »View Author Affiliations

Optics Express, Vol. 22, Issue S4, pp. A1137-A1144 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1221 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optimization method which is based on the ant colony algorithm (ACA) is described to optimize antireflection (AR) coating system with broadband omnidirectional characteristics for silicon solar cells incorporated with the solar spectrum (AM1.5 radiation). It’s the first time to use ACA method for optimizing the AR coating system. In this paper, for the wavelength range from 400 nm to 1100 nm, the optimized three-layer AR coating system could provide an average reflectance of 2.98% for incident angles from R ave θ+ to 80° and 6.56% for incident angles from 0° to 90° .

© 2014 Optical Society of America

OCIS Codes
(310.0310) Thin films : Thin films
(310.1210) Thin films : Antireflection coatings
(350.6050) Other areas of optics : Solar energy

ToC Category:
Light Trapping for Photovoltaics

Original Manuscript: February 10, 2014
Revised Manuscript: May 22, 2014
Manuscript Accepted: May 23, 2014
Published: June 6, 2014

X. Guo, H. Y. Zhou, S. Guo, X. X. Luan, W. K. Cui, Y. F. Ma, and L. Shi, "Design of broadband omnidirectional antireflection coatings using ant colony algorithm," Opt. Express 22, A1137-A1144 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett.8(5), 1429–1433 (2008). [CrossRef] [PubMed]
  2. D. J. Poxson, M. F. Schubert, F. W. Mont, E. F. Schubert, and J. K. Kim, “Broadband omnidirectional antireflection coatings optimized by genetic algorithm,” Opt. Lett.34(6), 728–730 (2009). [CrossRef] [PubMed]
  3. Y. Liu, S. H. Sun, J. Xu, L. Zhao, H. C. Sun, J. Li, W. W. Mu, L. Xu, and K. J. Chen, “Broadband antireflection and absorption enhancement by forming nano-patterned Si structures for solar cells,” Opt. Express19(S5Suppl 5), A1051–A1056 (2011). [CrossRef] [PubMed]
  4. K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the surface structure for the monolithic high-performance antireflection polymer film,” Adv. Mater.22(33), 3713–3718 (2010). [CrossRef] [PubMed]
  5. E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev.29(2), 300–305 (1982). [CrossRef]
  6. M. L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S. Y. Lin, “Realization of a near-perfect antireflection coating for silicon solar energy utilization,” Opt. Lett.33(21), 2527–2529 (2008). [CrossRef] [PubMed]
  7. Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small6(9), 984–987 (2010). [CrossRef] [PubMed]
  8. H. Park, D. Shin, G. Kang, S. Baek, K. Kim, and W. J. Padilla, “Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays,” Adv. Mater.23(48), 5796–5800 (2011). [CrossRef] [PubMed]
  9. P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface mie resonators,” Nat Commun3, 692 (2012). [CrossRef] [PubMed]
  10. J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of fresnel reflection,” Nat. Photonics1, 176 (2007).
  11. M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, and E. F. Schubert, “Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm,” Opt. Express16(8), 5290–5298 (2008). [CrossRef] [PubMed]
  12. H. Greiner, “Robust optical coating design with evolutionary strategies,” Appl. Opt.35(28), 5477–5483 (1996). [CrossRef] [PubMed]
  13. S. Martin, J. Rivory, and M. Schoenauer, “Synthesis of optical multilayer systems using genetic algorithms,” Appl. Opt.34(13), 2247–2254 (1995). [CrossRef] [PubMed]
  14. Y. J. Chang and Y. T. Chen, “Broadband omnidirectional antireflection coatings for metal-backed solar cells optimized using simulated annealing algorithm incorporated with solar spectrum,” Opt. Express19(S4Suppl 4), A875–A887 (2011). [CrossRef] [PubMed]
  15. M. Dorigo and L. M. Gambardella, “Ant colonies for the travelling salesman problem,” Biosystems43(2), 73–81 (1997). [CrossRef] [PubMed]
  16. M. Dorigo and L. M. Gambardella, “Ant colony system: a cooperative learning approach to the traveling salesman problem,” IEEE T Evolut. Comput.1, 53 (1997).
  17. S. N. Kuan, H. L. Ong, and K. M. Ng, “Solving the feeder bus network design problem by genetic algorithms and ant colony optimization,” Adv. Eng. Softw.37(6), 351–359 (2006). [CrossRef]
  18. W. Wang, S. Guo, N. Chang, and W. Yang, “Optimum buckling design of composite stiffened panels using ant colony algorithm,” Compos. Struct.92(3), 712–719 (2010). [CrossRef]
  19. H. A. Macleod, Thin-Film Optical Filters, (CRC, Bristol, 2001, Chap. 4).
  20. S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett.93(25), 251108 (2008). [CrossRef]
  21. E. D. Palik, “Doped n-Type Silicon (n-Si),” in Handbook of Optical Constants of Solids, (Academic, 1998).
  22. H. B. Duan, The Theory and Application of Ant Colony Algorithm (Science, 2005), Chap. 4.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited