OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S4 — Jun. 30, 2014
  • pp: A1174–A1189

Light trapping in ZnO nanowire arrays covered with an absorbing shell for solar cells

Jérôme Michallon, Davide Bucci, Alain Morand, Mauro Zanuccoli, Vincent Consonni, and Anne Kaminski-Cachopo  »View Author Affiliations


Optics Express, Vol. 22, Issue S4, pp. A1174-A1189 (2014)
http://dx.doi.org/10.1364/OE.22.0A1174


View Full Text Article

Enhanced HTML    Acrobat PDF (4327 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The absorption properties of ZnO nanowire arrays covered with a semiconducting absorbing shell for extremely thin absorber solar cells are theoretically investigated by optical computations of the ideal short-circuit current density with three-dimensional rigorous coupled wave analysis. The effects of nanowire geometrical dimensions on the light trapping and absorption properties are reported through a comprehensive optical mode analysis. It is shown that the high absorptance of these heterostructures is driven by two different regimes originating from the combination of individual nanowire effects and nanowire arrangement effects. In the short wavelength regime, the absorptance is likely dominated by optical modes efficiently coupled with the incident light and interacting with the nearby nanowires (i.e. diffraction), induced by the period of core shell ZnO nanowire arrays. In contrast, in the long wavelength regime, the absorptance is governed by key optically guided modes, related to the diameter of individual core shell ZnO nanowires.

© 2014 Optical Society of America

OCIS Codes
(040.5350) Detectors : Photovoltaic
(050.0050) Diffraction and gratings : Diffraction and gratings
(310.2790) Thin films : Guided waves
(350.6050) Other areas of optics : Solar energy
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Light Trapping for Photovoltaics

History
Original Manuscript: January 17, 2014
Revised Manuscript: April 1, 2014
Manuscript Accepted: May 14, 2014
Published: June 19, 2014

Citation
Jérôme Michallon, Davide Bucci, Alain Morand, Mauro Zanuccoli, Vincent Consonni, and Anne Kaminski-Cachopo, "Light trapping in ZnO nanowire arrays covered with an absorbing shell for solar cells," Opt. Express 22, A1174-A1189 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-S4-A1174


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. A. Czaban, D. A. Thompson, and R. R. LaPierre, “GaAs core--shell nanowires for photovoltaic applications,” Nano Lett.9(1), 148–154 (2009). [CrossRef] [PubMed]
  2. O. Gunawan and S. Guha, “Characteristics of vapor-liquid-solid grown silicon nanowire solar cells,” Sol. Energy Mater. Sol. Cells93(8), 1388–1393 (2009). [CrossRef]
  3. G. Jia, M. Steglich, I. Sill, and F. Falk, “Core-shell heterojunction solar cells on silicon nanowire arrays,” Sol. Energy Mater. Sol. Cells96, 226–230 (2012). [CrossRef]
  4. B. O’Donnell, L. Yu, M. Foldyna, and P. Roca i Cabarrocas, “Silicon nanowire solar cells grown by PECVD,” J. Non-Cryst. Solids358(17), 2299–2302 (2012). [CrossRef]
  5. E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett.10(3), 1082–1087 (2010). [CrossRef] [PubMed]
  6. J. Wang, Z. Li, N. Singh, and S. Lee, “Highly-ordered vertical Si nanowire/nanowall decorated solar cells,” Opt. Express19(23), 23078–23084 (2011). [CrossRef] [PubMed]
  7. J. Li, H. Yu, and Y. Li, “Solar energy harnessing in hexagonally arranged Si nanowire arrays and effects of array symmetry on optical characteristics,” Nanotechnology23(19), 194010 (2012). [CrossRef] [PubMed]
  8. K. E. Plass, M. A. Filler, J. M. Spurgeon, B. M. Kayes, S. Maldonado, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Flexible polymer-embedded Si wire arrays,” Adv. Mater.21(3), 325–328 (2009). [CrossRef]
  9. M. C. Putnam, S. W. Boettcher, M. D. Kelzenberg, D. B. Turner-Evans, J. M. Spurgeon, E. L. Warren, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Si microwire-array solar cells,” Energy Environ. Sci.3(8), 1037–1041 (2010). [CrossRef]
  10. J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science339(6123), 1057–1060 (2013). [CrossRef] [PubMed]
  11. C. Lévy-Clément, A. Katty, S. Bastide, F. Zenia, I. Mora, and V. Munoz-Sanjose, “A new CdTe/ZnO columnar composite film for Eta-solar cells,” Phys. E14(1–2), 229–232 (2002). [CrossRef]
  12. C. Lévy-Clément, R. Tena-Zaera, M. Ryan, A. Katty, and G. Hodes, “CdSe-sensitized p-CuSCN/nanowire n-ZnO heterojunctions,” Adv. Mater.17(12), 1512–1515 (2005). [CrossRef]
  13. R. Tena-Zaera, A. Katty, S. Bastide, C. Lévy-Clément, B. O’Regan, and V. Munoz-Sanjosé, “ZnO/CdTe/CuSCN, a promising heterostructure to act as inorganic eta-solar cell,” Thin Solid Films483(1–2), 372–377 (2005). [CrossRef]
  14. R. Salazar, A. Delamoreanu, C. Levy-Clement, and V. Ivanova, “ZnO/CdTe and ZnO/CdS core-shell nanowire arrays for extremely thin absorber solar cells,” Energy Procedia10, 122–127 (2011). [CrossRef]
  15. S. Sanchez, D. Aldakov, D. Rouchon, L. Rapenne, A. Delamoreanu, C. Lévy-Clément, and V. Ivanova, “Sensitization of ZnO nanowire arrays with CuInS2 for extremely thin absorber solar cells,” J. Renew. Sustain. Energy5(1), 011207 (2013). [CrossRef]
  16. V. Consonni, G. Rey, J. Bonaime, N. Karst, B. Doisneau, H. Roussel, S. Renet, and D. Bellet, “Synthesis and physical properties of ZnO/CdTe core shell nanowires grown by low-cost deposition methods,” Appl. Phys. Lett.98(11), 111906 (2011). [CrossRef]
  17. H. Chao, J. Cheng, J. Lu, Y. Chang, C. Cheng, and C. Chen, “Growth and characterization of type-II ZnO/ZnTe core-shell nanowire arrays for solar cell applications,” Superlattices Microstruct.47(1), 160–164 (2010). [CrossRef]
  18. J. Xu, X. Yang, H. Wang, X. Chen, C. Luan, Z. Xu, Z. Lu, V. A. L. Roy, W. Zhang, and C. S. Lee, “Arrays of ZnO/ZnxCd1-xSe nanocables: band gap engineering and photovoltaic applications,” Nano Lett.11(10), 4138–4143 (2011). [CrossRef] [PubMed]
  19. X. Wang, H. Zhu, Y. Xu, H. Wang, Y. Tao, S. Hark, X. Xiao, and Q. Li, “Aligned ZnO/CdTe core-shell nanocable arrays on indium tin oxide: synthesis and photoelectrochemical properties,” ACS Nano4(6), 3302–3308 (2010). [CrossRef] [PubMed]
  20. J. Michallon, M. Zanuccoli, A. Kaminski-Cachopo, V. Consonni, A. Morand, D. Bucci, F. Emieux, H. Szambolics, S. Perraud, and I. Semenikhin, “Comparison of optical properties of Si and ZnO/CdTe core/shell nanowire arrays,” Mater. Sci. Eng. B178(9), 665–669 (2013). [CrossRef]
  21. K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett.11(4), 1851–1856 (2011). [CrossRef] [PubMed]
  22. S. Adachi, T. Kimura, and N. Suzuki, “Optical properties of CdTe: Experiment and modeling,” J. Appl. Phys.74(5), 3435–3441 (1993). [CrossRef]
  23. G. Rey, D. Kohen, M. Modreanu, V. Consonni, C. Ternon, and D. Bellet, “Extraction of thin film refractive index from transmittance and reflectance spectra using a graphical inversion method,” Submitted.
  24. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A12(5), 1068–1076 (1995). [CrossRef]
  25. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A14(10), 2758–2767 (1997). [CrossRef]
  26. D. Bucci, B. Martin, and A. Morand, “Study of propagation modes of bent waveguides and micro-ring resonators by means of the aperiodic Fourier modal method,” Proc. SPIE7597, 75970U (2010). [CrossRef]
  27. D. Bucci, B. Martin, and A. Morand, “Application of the three-dimensional aperiodic Fourier modal method using arc elements in curvilinear coordinates,” J. Opt. Soc. Am. A29(3), 367–373 (2012). [CrossRef]
  28. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A13(5), 1024–1035 (1996). [CrossRef]
  29. J. Bischoff, “Formulation of the normal vector RCWA for symmetric crossed gratings in symmetric mountings,” J. Opt. Soc. Am. A27(5), 1024–1031 (2010). [CrossRef] [PubMed]
  30. ASTM, Reference Solar Spectral Irradiance: Air Mass 1.5 spectra, http://rredc.nrel.gov/solar/spectra/am1.5 , last accessed 15/07/2013.
  31. B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, C. M. de Sterke, and R. C. McPhedran, “Modal analysis of enhanced absorption in silicon nanowire arrays,” Opt. Express19(S5), A1067–A1081 (2011). [CrossRef] [PubMed]
  32. L. Wen, X. Li, Z. Zhao, S. Bu, X. Zeng, J. H. Huang, and Y. Wang, “Theoretical consideration of III-V nanowire/Si triple-junction solar cells,” Nanotechnology23(50), 505202 (2012). [CrossRef] [PubMed]
  33. M. D. Kelzenberg, M. C. Putnam, D. B. Turner-Evans, N. S. Lewis, and H. A. Atwater, “Predicted efficiency of Si wire array solar cells,” in 34th IEEE Photovolt. Specialists Conf. (2009), pp. 001948–001953. [CrossRef]
  34. M. Zanuccoli, J. Michallon, I. Semenihin, C. Fiegna, A. Kaminski-Cachopo, E. Sangiorgi, and V. Vyurkov, “Numerical simulation of vertical silicon nanowires based heterojunction solar cells,” Energy Procedia38, 216–222 (2013). [CrossRef]
  35. A. Snyder and J. Love, Optical Waveguide Theory (Springer, 1983).
  36. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A13(9), 1870–1876 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited