OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S4 — Jun. 30, 2014
  • pp: A1190–A1196

Polarized light emitting diodes using silver nanoellipsoids

Örs Sepsi, Tibor Gál, and Pál Koppa  »View Author Affiliations

Optics Express, Vol. 22, Issue S4, pp. A1190-A1196 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (673 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the polarizing properties of periodic array of silver nanoellipsoids placed on top of a planar LED structure. The response of the particles is calculated with the periodic layered Green’s tensor in the electrostatic limit with dynamic depolarization and radiation damping corrections. We investigate the degree of polarization and the total extracted power spectra depending on parameters like lattice period, axial ratio and particle size. The proposed model is applicable over a wide range of parameters and appropriate to optimize the given structure. The optimization procedure shows that particles in the size range of 100 nm are optimal to reach 50% degree of polarization and less than 15% absorbance for an uncollimated and unpolarized dipole source.

© 2014 Optical Society of America

OCIS Codes
(230.3670) Optical devices : Light-emitting diodes
(050.6624) Diffraction and gratings : Subwavelength structures
(240.5440) Optics at surfaces : Polarization-selective devices

ToC Category:
Light-Emitting Diodes

Original Manuscript: March 19, 2014
Revised Manuscript: May 10, 2014
Manuscript Accepted: May 12, 2014
Published: June 19, 2014

Örs Sepsi, Tibor Gál, and Pál Koppa, "Polarized light emitting diodes using silver nanoellipsoids," Opt. Express 22, A1190-A1196 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Otte, L. P. de Joung, and A. H. M. van Roermund, Low-power Wireless Infrared Communications (Kluwer Academic Publishers, 1999). [CrossRef]
  2. J. C. Ramella-Roman, K. Lee, S. A. Prahl, and S. L. Jacques, “Polarized light imaging with a handheld camera,” Proc. SPIE 5068, 284–293 (2003). [CrossRef]
  3. J. S. Baba, S. S. Gleason, J. S. Goddard, and J. M. Paulus, “Application of polarization for optical motion-registered SPECT functional imaging of tumors in mice,” Proc. SPIE 5702, 97–103 (2005). [CrossRef]
  4. P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley, Canada, 1999).
  5. M. F. Schubert, S. Chhajed, J. K. Kim, E. F. Schubert, and J. Cho, “Polarization of light emission by 460 nm GaInN/GaN light-emitting diodes grown on (0001) oriented sapphire substrates,” Appl. Phys. Lett. 91, 051117 (2007). [CrossRef]
  6. J. H. Oh, S. J. Yang, and Y. R. Do, “Polarized white light from LEDs using remote-phosphor layer sandwiched between reflective polarizer and light-recycling dichroic filter,” Opt. Express 21, A765–A773 (2013). [CrossRef] [PubMed]
  7. Ö. Sepsi, I. Szanda, and P. Koppa, “Investigation of polarized light emitting diodes with integrated wire grid polarizer,” Opt. Express 18, 14547–14552 (2010). [CrossRef] [PubMed]
  8. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998). [CrossRef]
  9. S. G. Moiseev, “Thin-film polarizer made of heterogeneous medium with uniformly oriented silver nanoparticles,” Appl. Phys. A 103, 775–777 (2011). [CrossRef]
  10. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003). [CrossRef]
  11. B. Gallinet, A. M. Kern, and O. J. F. Martin, “Accurate and versatile modeling of electromagnetic scattering on periodic nanostructures with a surface integral approach,” J. Opt. Soc. Am. A 27, 2261–2271 (2010). [CrossRef]
  12. M. Paulus, P. Gay-Balmaz, and O. J. F. Martin, “Accurate and efficient computation of the Green’s tensor for stratified media,” Phys. Rev. E 62, 5797–5807 (2000). [CrossRef]
  13. U. Kreibig, “Electronic properties of small silver particles, the optical constant and their temperature dependence,” J. Phys. F: Metal Phys 4, 999 (1974). [CrossRef]
  14. K. Kambe, “Theory of Electron Diffraction by Crystals. Green’s function and integral equation,” Z. Naturforschg. 22a, 422–431 (1967).
  15. N. A. Sanford, A. Munkholm, M. R. Krames, A. Shapiro, I. Levin, A. V. Davydov, S. Sayan, L. S. Wielunski, and T. E. Madey, “Refractive index and birefringence of InxGa1-xN films grown by MOCVD,” phys. stat. sol. (C) 2, 2783–2786 (2005). [CrossRef]
  16. L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107, 7343–7350 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited