OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S4 — Jun. 30, 2014
  • pp: A1197–A1202

Parasitic loss suppression in photonic and plasmonic photovoltaic light trapping structures

Yi Zou, Xing Sheng, Kun Xia, Huayu Fu, and Juejun Hu  »View Author Affiliations

Optics Express, Vol. 22, Issue S4, pp. A1197-A1202 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1116 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we examine the optical loss mechanisms and mitigation strategies in classical photovoltaic light trapping structures consisting of diffractive gratings integrated with a backside reflector, which couple normal incident solar radiation into guided modes in solar cells to enhance optical absorption. Parasitic absorption from metal or dielectric backside reflectors is identified to be a major loss contributor in such light trapping structures. We elucidate the optical loss mechanism based on the classical coupled mode theory. Further, a spacer design is proposed and validated through numerical simulations to significantly suppress the parasitic loss and improve solar cell performance.

© 2014 Optical Society of America

OCIS Codes
(160.3900) Materials : Metals
(230.1480) Optical devices : Bragg reflectors
(230.1950) Optical devices : Diffraction gratings
(240.6680) Optics at surfaces : Surface plasmons
(350.6050) Other areas of optics : Solar energy

ToC Category:
Light Trapping for Photovoltaics

Original Manuscript: May 6, 2014
Revised Manuscript: June 6, 2014
Manuscript Accepted: June 9, 2014
Published: June 27, 2014

Yi Zou, Xing Sheng, Kun Xia, Huayu Fu, and Juejun Hu, "Parasitic loss suppression in photonic and plasmonic photovoltaic light trapping structures," Opt. Express 22, A1197-A1202 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Goetzberger and C. Hebling, “Photovoltaic materials, past, present, future,” Sol. Energy Mater. Sol. Cells 62(1-2), 1–19 (2000). [CrossRef]
  2. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15(25), 16986–17000 (2007). [CrossRef] [PubMed]
  3. J. Muller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004). [CrossRef]
  4. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007). [CrossRef]
  5. J. Zhu, C. M. Hsu, Z. F. Yu, S. H. Fan, and Y. Cui, “Nanodome Solar Cells with Efficient Light Management and Self-Cleaning,” Nano Lett. 10(6), 1979–1984 (2010). [CrossRef] [PubMed]
  6. J. G. Mutitu, S. Y. Shi, C. H. Chen, T. Creazzo, A. Barnett, C. Honsberg, and D. W. Prather, “Thin film solar cell design based on photonic crystal and diffractive grating structures,” Opt. Express 16(19), 15238–15248 (2008). [CrossRef] [PubMed]
  7. D. Y. Zhou and R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” J. Appl. Phys. 103(9), 093102 (2008). [CrossRef]
  8. C. Battaglia, J. Escarre, K. Soderstrom, M. Charriere, M. Despeisse, F. J. Haug, and C. Ballif, “Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells,” Nat. Photonics 5(9), 535–538 (2011). [CrossRef]
  9. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010). [CrossRef] [PubMed]
  10. N. N. Feng, J. Michel, L. Zeng, J. Liu, C. Y. Hong, L. C. Kimerling, and X. Duan, “Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells,” IEEE Trans. Electron. Dev. 54(8), 1926–1933 (2007). [CrossRef]
  11. X. Sheng, J. F. Liu, I. Kozinsky, A. M. Agarwal, J. Michel, and L. C. Kimerling, “Design and Non-Lithographic Fabrication of Light Trapping Structures for Thin Film Silicon Solar Cells,” Adv. Mater. 23(7), 843–847 (2011). [CrossRef] [PubMed]
  12. L. Zeng, P. Bermel, Y. Yi, B. A. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett. 93(22), 221105 (2008). [CrossRef]
  13. Z. F. Yu, A. Raman, and S. H. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010). [CrossRef] [PubMed]
  14. S. E. Han and G. Chen, “Toward the Lambertian Limit of Light Trapping in Thin Nanostructured Silicon Solar Cells,” Nano Lett. 10(11), 4692–4696 (2010). [CrossRef] [PubMed]
  15. Z. F. Yu, A. Raman, and S. H. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3Suppl 3), A366–A380 (2010). [CrossRef] [PubMed]
  16. Z. C. Holman, S. De Wolf, and C. Ballif, “Improving metal reflectors by suppressing surface plasmon polaritons: a priori calculation of the internal reflectance of a solar cell,” Light Sci. Appl. 2, e106 (2013).
  17. X. Sheng, J. F. Liu, N. Coronel, A. M. Agarwal, J. Michel, and L. C. Kimerling, “Integration of Self-Assembled Porous Alumina and Distributed Bragg Reflector for Light Trapping in Si Photovoltaic Devices,” IEEE Photon. Technol. Lett. 22(18), 1394–1396 (2010). [CrossRef]
  18. L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006). [CrossRef]
  19. J. N. Winn, Y. Fink, S. H. Fan, and J. D. Joannopoulos, “Omnidirectional reflection from a one-dimensional photonic crystal,” Opt. Lett. 23(20), 1573–1575 (1998). [CrossRef] [PubMed]
  20. X. Sheng, S. G. Johnson, L. Z. Broderick, J. Michel, and L. C. Kimerling, “Integrated photonic structures for light trapping in thin-film Si solar cells,” Appl. Phys. Lett. 100(11), 111110 (2012). [CrossRef]
  21. H. W. Deckman, C. R. Wronski, H. Witzke, and E. Yablonovitch, “Optically enhanced amorphous-silicon solar-cells,” Appl. Phys. Lett. 42(11), 968–970 (1983). [CrossRef]
  22. S. S. Hegedus and R. Kaplan, “Analysis of quantum efficiency and optical enhancement in amorphous Si p-i-n solar cells,” Prog. Photovolt. Res. Appl. 10(4), 257–269 (2002). [CrossRef]
  23. N. N. Lal, H. Zhou, M. Hawkeye, J. K. Sinha, P. N. Bartlett, G. A. J. Amaratunga, and J. J. Baumberg, “Using spacer layers to control metal and semiconductor absorption in ultrathin solar cells with plasmonic substrates,” Phys. Rev. B 85(24), 245318 (2012). [CrossRef]
  24. J. Morris, R. R. Arya, J. G. Odowd, and S. Wiedeman, “Absorption enhancement in hydrogenated amorphous silicon-based solar-cells,” J. Appl. Phys. 67(2), 1079–1087 (1990). [CrossRef]
  25. S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109(7), 073105 (2011). [CrossRef]
  26. J. Gjessing, A. S. Sudbo, and E. S. Marstein, “Comparison of periodic light-trapping structures in thin crystalline silicon solar cells,” J. Appl. Phys. 110(3), 033104 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited