OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S5 — Aug. 25, 2014
  • pp: A1203–A1221

Mobile Rayleigh Doppler lidar for wind and temperature measurements in the stratosphere and lower mesosphere

Xiankang Dou, Yuli Han, Dongsong Sun, Haiyun Xia, Zhifeng Shu, Ruocan Zhao, Mingjia Shangguan, and Jie Guo  »View Author Affiliations


Optics Express, Vol. 22, Issue S5, pp. A1203-A1221 (2014)
http://dx.doi.org/10.1364/OE.22.0A1203


View Full Text Article

Enhanced HTML    Acrobat PDF (3749 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A mobile Rayleigh Doppler lidar based on the molecular double-edge technique is developed for measuring wind velocity in the middle atmosphere up to 60 km. The lidar uses three lasers with a mean power of 17.5 W at 355 nm each and three 1 m diameter telescopes to receive the backscattered echo: one points to zenith for vertical wind component and temperature measurement; the two others pointing toward east and north are titled at 30° from the zenith for zonal and meridional wind component, respectively. The Doppler shift of the backscattered echo is measured by inter-comparing the signal detected through each of the double-edge channels of a triple Fabry-Perot interferometer (FPI) tuned to either side of the emitted laser line. The third channel of FPI is used for frequency locking and a locking accuracy of 1.8 MHz RMS (root-mean-square) at 355 nm over 2 hours is realized, corresponding to a systematic error of 0.32 m/s. In this paper, we present detailed technical evolutions on system calibration. To validate the performance of the lidar, comparison experiments was carried out in December 2013, which showed good agreement with radiosondes but notable biases with ECMWF (European Centre for Medium range Weather Forecasts) in the height range of overlapping data. Wind observation over one month performed in Delhi (37.371° N, 97.374° E), northwest of China, demonstrated the stability and robustness of the system.

© 2014 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(280.3340) Remote sensing and sensors : Laser Doppler velocimetry
(280.3640) Remote sensing and sensors : Lidar

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: April 18, 2014
Revised Manuscript: June 24, 2014
Manuscript Accepted: June 25, 2014
Published: July 8, 2014

Citation
Xiankang Dou, Yuli Han, Dongsong Sun, Haiyun Xia, Zhifeng Shu, Ruocan Zhao, Mingjia Shangguan, and Jie Guo, "Mobile Rayleigh Doppler lidar for wind and temperature measurements in the stratosphere and lower mesosphere," Opt. Express 22, A1203-A1221 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-S5-A1203


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Meriwether and A. J. Gerrard, “Mesosphere inversion layers and stratosphere temperature enhancements,” Rev. Geophys.42(3), RG3003 (2004). [CrossRef]
  2. A. Müllemann and F. J. Lübken, “Horizontal winds in the mesosphere at high latitudes,” Adv. Space Res.35(11), 1890–1894 (2005). [CrossRef]
  3. A. Hertzog, P. Cocquerez, C. Basdevant, G. Boccara, J. Bordereau, B. Brioit, A. Cardonne, R. Guilbon, A. Ravissot, É. Schmitt, J. N. Valdivia, S. Venel, and F. Vial, “Stratéole/vorcore-long-duration, superpressure balloons to study the Antarctic lower stratosphere during the 2005 winter,” J. Atmos. Ocean. Technol.24(12), 2048–2061 (2007). [CrossRef]
  4. P. Hays, M. Dehring, L. Fisk, P. Tchoryk, I. Dors, J. Ryan, J. Wang, M. Hardesty, B. Gentry, and F. Hovis, “Space-based Doppler winds lidar: a vital national need,” In response to national research council (NRC) decadal study request for information (RFI), May (2005).
  5. European Space Agency ESA, ADM-Aeolus science report: ESA SP-1311 (ESA Communication Production Office, 2008).
  6. A. Stoffelen, J. Pailleux, E. Källen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc.86(1), 73–87 (2005). [CrossRef]
  7. O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol.26(12), 2501–2515 (2009). [CrossRef]
  8. U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part II: Simulations and Rayleigh Receiver Radiometric performance,” J. Atmos. Ocean. Technol.26(12), 2516–2530 (2009). [CrossRef]
  9. M. L. Chanin, A. Garnier, A. Hauchecorne, and J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett.16(11), 1273–1276 (1989). [CrossRef]
  10. A. Garnier and M. L. Chanin, “Description of a Doppler Rayleigh lidar for measuring winds in the middle atmosphere,” Appl. Phys. B55(1), 35–40 (1992). [CrossRef]
  11. C. Souprayen, A. Garnier, A. Hertzog, A. Hauchecorne, and J. Porteneuve, “Rayleigh-Mie Doppler wind lidar for atmospheric measurements. I. Instrumental setup, validation, and first climatological results,” Appl. Opt.38(12), 2410–2421 (1999). [CrossRef] [PubMed]
  12. C. Souprayen, A. Garnier, and A. Hertzog, “Rayleigh-Mie Doppler wind lidar for atmospheric measurements. II. Mie scattering effect, theory, and calibration,” Appl. Opt.38(12), 2422–2431 (1999). [CrossRef] [PubMed]
  13. C. A. Tepley, S. I. Sargoytchev, and C. O. Hines, “Initial Doppler Rayleigh lidar results from Arecibo,” Geophys. Res. Lett.18(2), 167–170 (1991). [CrossRef]
  14. C. A. Tepley, S. I. Sargoytchev, and R. Rojas, “The Doppler Rayleigh lidar system at Arecibo,” IEEE Trans. Geosci. Remote Sens.31(1), 36–47 (1993). [CrossRef]
  15. C. A. Tepley, “Neutral winds of the middle atmosphere observed at Arecibo using a Doppler Rayleigh lidar,” J. Geophys. Res.99(D12), 25781–25790 (1994). [CrossRef]
  16. J. S. Friedman, C. A. Tepley, P. A. Castleberg, and H. Roe, “Middle-atmospheric Doppler lidar using an iodine-vapor edge filter,” Opt. Lett.22(21), 1648–1650 (1997). [CrossRef] [PubMed]
  17. D. Rees, M. Vyssogorets, N. P. Meredith, E. Griffin, and Y. Chaxell, “The Doppler wind and temperature system of the ALOMAR lidar facility: overview and initial results,” J. Atmos. Sol. Terr. Phys.58(16), 1827–1842 (1996). [CrossRef]
  18. U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, “The ALOMAR Rayleigh/Mie/Raman lidar: Objectives, configuration, and performance,” Ann. Geophys.18(7), 815–833 (2000). [CrossRef]
  19. G. Baumgarten, “Doppler Rayleigh Mie Raman lidar for wind and temperature measurements in the middle atmosphere up to 80 km,” Atmos. Meas. Tech.3(6), 1509–1518 (2010). [CrossRef]
  20. W. Huang, X. Chu, J. Wiig, B. Tan, C. Yamashita, T. Yuan, J. Yue, S. D. Harrell, C.-Y. She, B. P. Williams, J. S. Friedman, and R. M. Hardesty, “Field demonstration of simultaneous wind and temperature measurements from 5 to 50 km with a Na double-edge magneto-optic filter in a multi-frequency Doppler lidar,” Opt. Lett.34(10), 1552–1554 (2009). [PubMed]
  21. B. M. Gentry, H. Chen, and S. X. Li, “Wind measurements with 355-nm molecular Doppler lidar,” Opt. Lett.25(17), 1231–1233 (2000). [CrossRef] [PubMed]
  22. F. Shen, H. H. Cha, J. Dong, D. Kim, D. Sun, and S. O. Kwon, “Design and performance simulation of a molecular Doppler wind lidar,” Chin. Opt. Lett.7(7), 593–597 (2009). [CrossRef]
  23. H. Xia, X. Dou, D. Sun, Z. Shu, X. Xue, Y. Han, D. Hu, Y. L. Han, and T. Cheng, “Mid-altitude wind measurements with mobile Rayleigh Doppler lidar incorporating system-level optical frequency control method,” Opt. Express20(14), 15286–15300 (2012). [CrossRef] [PubMed]
  24. Y. L. Han, X. Dou, D. Sun, H. Xia, Z. Shu, Y. Han, X. Xue, and T. Cheng, “Analysis on wind retrieval methods for Rayleigh Doppler lidar,” Opt. Eng.53(6), 061607 (2014). [CrossRef]
  25. Z. Shu, Z. Shu, H. Xia, D. Sun, Y. Han, C. Hyunki, K. Dukhyeon, G. Wang, B. Sunghoon, and D. Hu, “Low stratospheric wind measurement using mobile Rayleigh Doppler Wind LIDAR,” J. Opt. Soc. Korea.16(2), 141–144 (2012).
  26. H. Xia, D. Sun, Y. Yang, F. Shen, J. Dong, and T. Kobayashi, “Fabry-Perot interferometer based Mie Doppler lidar for low tropospheric wind observation,” Appl. Opt.46(29), 7120–7131 (2007). [CrossRef] [PubMed]
  27. C. L. Korb, B. M. Gentry, S. X. Li, and C. Flesia, “Theory of the double-edge technique for Doppler lidar wind measurement,” Appl. Opt.37(15), 3097–3104 (1998). [CrossRef] [PubMed]
  28. C. Flesia and C. L. Korb, “Theory of the double-edge molecular technique for Doppler lidar wind measurement,” Appl. Opt.38(3), 432–440 (1999). [CrossRef] [PubMed]
  29. Z. S. Liu, D. Wu, J. T. Liu, K. L. Zhang, W. B. Chen, X. Q. Song, J. W. Hair, and C. Y. She, “Low-altitude atmospheric wind measurement from the combined Mie and Rayleigh backscattering by Doppler lidar with an iodine filter,” Appl. Opt.41(33), 7079–7086 (2002). [CrossRef] [PubMed]
  30. J. A. McKay, “Assessment of a multibeam Fizeau wedge interferometer for Doppler wind lidar,” Appl. Opt.41(9), 1760–1767 (2002). [CrossRef] [PubMed]
  31. D. Bruneau, A. Garnier, A. Hertzog, and J. Porteneuve, “Wind-velocity lidar measurements by use of a Mach-Zehnder interferometer, comparison with a Fabry-Perot interferometer,” Appl. Opt.43(1), 173–182 (2004). [CrossRef] [PubMed]
  32. N. Cézard, A. Dolfi-Bouteyre, J. P. Huignard, and P. H. Flamant, “Performance evaluation of a dual fringe-imaging Michelson interferometer for air parameter measurements with a 355 nm Rayleigh-Mie lidar,” Appl. Opt.48(12), 2321–2332 (2009). [CrossRef] [PubMed]
  33. C. Weitkamp, Range-Resolved Optical Remote Sensing of the Atmosphere (Springer, 2005), pp. 273–281.
  34. A. Hauchecorne, M. L. Chanin, and P. Keckhut, “Climatology and trends of the middle atmospheric temperature (33–87 km) as seen by Rayleigh lidar over the south of France,” J. Geophys. Res.96(D8), 15297–15309 (1991). [CrossRef]
  35. V. Ramaswamy, M. L. Chanin, J. Angell, J. Barnett, D. Gaffen, M. Gelman, P. Keckhut, Y. Koshelkov, J. Labitzke, J. R. Lin, A. O’Neill, J. Nash, W. Randel, R. Rood, K. Shine, M. Shiotani, and R. Swinbank, “Stratospheric temperature trends: Observations and model simulations,” Rev. Geophys.39(1), 71–122 (2001). [CrossRef]
  36. J. A. McKay, “Modeling of direct detection Doppler wind lidar. I. The edge technique,” Appl. Opt.37(27), 6480–6486 (1998). [CrossRef] [PubMed]
  37. J. A. McKay, “Modeling of direct detection Doppler wind lidar. II. The fringe imaging technique,” Appl. Opt.37(27), 6487–6493 (1998). [CrossRef] [PubMed]
  38. J. A. McKay, “Comment on “Theory of the double-edge molecular technique for Doppler lidar wind measurement”,” Appl. Opt.39(6), 993–996 (2000). [CrossRef] [PubMed]
  39. O. Reitebuch, C. Lemmerz, U. Marksteiner, S. Rahm, and B. Witschas, “Airborne lidar observations supporting the ADM-Aeolus mission for global wind profiling,” in 26th Int. Laser Radar Conference, Porto Heli, Greece (2012), S5O-01.
  40. B. Witschas, C. Lemmerz, and O. Reitebuch, “Horizontal LIDAR measurements for the proof of spontaneous Rayleigh-Brillouin scattering in the atmosphere,” Appl. Opt.51(25), 6207–6219 (2012). [CrossRef] [PubMed]
  41. B. Witschas, “Analytical model for Rayleigh-Brillouin line shapes in air,” Appl. Opt.50(3), 267–270 (2011). [CrossRef] [PubMed]
  42. R. G. Seasholtz, “2D velocity and temperature measurements in high speed flows based on spectrally resolved Rayleigh scattering,” in New Trends in Instrumentation for Hypersonic Research, Vol. 224 of NATO ASI Series (Springer, 1993), pp. 399–408.
  43. A. Dabas, M. L. Denneulin, P. Flamant, C. Loth, A. Garnier, and A. Dolfi-Bouteyre, “Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects,” Tellus, Ser. A, Dyn. Meterol. Oceanogr.60(2), 206–215 (2008). [CrossRef]
  44. M. J. McGill, W. R. Skinner, and T. D. Irgang, “Analysis techniques for the recovery of winds and backscatter coefficients from a multiple-channel incoherent Doppler lidar,” Appl. Opt.36(6), 1253–1268 (1997). [CrossRef] [PubMed]
  45. T. Schröder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wührer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B87(3), 437–444 (2007). [CrossRef]
  46. B. M. Knudsen, J. M. Rosen, N. T. Kjome, and A. T. Whitten, “Comparison of analyzed stratospheric temperatures and calculated trajectories with long-duration balloon data,” J. Geophys. Res.101(D14), 19137–19145 (1996). [CrossRef]
  47. A. D. Belmont, D. G. Dartt, and G. D. Nastrom, “Variations of stratospheric zonal winds, 20-65 km, 1961-1971,” J. Appl. Meteorol.14(4), 585–594 (1975). [CrossRef]
  48. T. Li, X. Fang, W. Liu, S. Y. Gu, and X. Dou, “Narrowband sodium lidar for the measurements of mesopause region temperature and wind,” Appl. Opt.51(22), 5401–5411 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited