OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S5 — Aug. 25, 2014
  • pp: A1222–A1228

Vertical InGaN-based green-band solar cells operating under high solar concentration up to 300 suns

Jinn-Kong Sheu, Fu-Bang Chen, Shou-Hung Wu, Ming-Lun Lee, Po-Cheng Chen, and Yu-Hsiang Yeh  »View Author Affiliations

Optics Express, Vol. 22, Issue S5, pp. A1222-A1228 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (945 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



InGaN/GaN-based solar cells with vertical-conduction feature on silicon substrates were fabricated by wafer bonding technique. The vertical solar cells with a metal reflector sandwiched between the GaN-based epitaxial layers and the Si substrate could increase the effective thickness of the absorption layer. Given that the thermally resistive sapphire substrates were replaced by the Si substrate with high thermal conductivity, the solar cells did not show degradation in power conversion efficiency (PCE) even when the solar concentrations were increased to 300 suns. The open circuit voltage increased from 1.90 V to 2.15 V and the fill factor increased from 0.55 to 0.58 when the concentrations were increased from 1 sun to 300 suns. With the 300-sun illumination, the PCE was enhanced by approximately 33% compared with the 1-sun illumination.

© 2014 Optical Society of America

OCIS Codes
(040.5350) Detectors : Photovoltaic
(230.0250) Optical devices : Optoelectronics
(230.5590) Optical devices : Quantum-well, -wire and -dot devices

ToC Category:

Original Manuscript: June 3, 2014
Revised Manuscript: June 23, 2014
Manuscript Accepted: June 27, 2014
Published: July 9, 2014

Jinn-Kong Sheu, Fu-Bang Chen, Shou-Hung Wu, Ming-Lun Lee, Po-Cheng Chen, and Yu-Hsiang Yeh, "Vertical InGaN-based green-band solar cells operating under high solar concentration up to 300 suns," Opt. Express 22, A1222-A1228 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. R. King, A. Boca, W. Hong, X. Q. Liu, D. Bhusari, D. Larrabee, K. M. Edmondson, D. C. Law, C. M. Fetzer, S. Mesropian, and N. H. Karam, “Band-gap-engineered architectures for high-efficiency multijunction concentrator solar cells,” in Proc. 24th Eur. PVSEC (2009), pp. 55–61.
  2. A. D. Vos, Thermodynamics of Solar Energy Conversion (Wiley, 2008).
  3. J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1-xGaxN alloys: full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003). [CrossRef]
  4. H. Hamzaoui, A. S. Bouazzi, and B. Rezig, “Theoretical possibilities of InxGa1-xN tandem PV structures,” Sol. Energy Mater. Sol. Cells 87(1–4), 595–603 (2005). [CrossRef]
  5. C. C. Yang, C. H. Jang, J. K. Sheu, M. L. Lee, S. J. Tu, F. W. Huang, Y. H. Yeh, and W. C. Lai, “Characteristics of InGaN-based concentrator solar cells operating under 150X solar concentration,” Opt. Express 19(S4), A695–A700 (2011). [CrossRef] [PubMed]
  6. J. K. Sheu, C. C. Yang, S. J. Tu, K. H. Chang, M. L. Lee, W. C. Lai, and L. C. Peng, “Demonstration of GaN-based solar cells with GaN/InGaN superlattice absorption layers,” IEEE Electron Device Lett. 30(3), 225–227 (2009). [CrossRef]
  7. R. Dahal, B. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “InGaN/GaN multiple quantum well solar cells with long operating wavelengths,” Appl. Phys. Lett. 94(6), 063505 (2009). [CrossRef]
  8. isR. Dahal, J. Li, K. Aryal, J. Y. Lin, and H. X. Jiang, “InGaN/GaN multiple quantum well concentrator solar cells,” Appl. Phys. Lett. 97(7), 073115 (2010). [CrossRef]
  9. C. C. Yang, J. K. Sheu, X. W. Liang, M. S. Huang, M. L. Lee, K. H. Chang, S. J. Tu, F. W. Huang, and W. C. Lai, “Enhancement of the conversion efficiency of GaN-based photovoltaic devices with AlGaN/InGaN absorption layers,” Appl. Phys. Lett. 97(2), 021113 (2010). [CrossRef]
  10. C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Appl. Phys. Lett. 93(14), 143502 (2008). [CrossRef]
  11. D. Holec, P. M. F. J. Costa, M. J. Kappers, and C. J. Humphreys, “Critical thickness calculations for InGaN/GaN,” J. Cryst. Growth 303(1), 314–317 (2007). [CrossRef]
  12. R. H. Horng, S. T. Lin, Y. L. Tsai, M. T. Chu, W. Y. Liao, M. H. Wu, R. M. Lin, and Y. C. Lu, “Improved conversion efficiency of GaN/InGaN thin-film solar cells,” IEEE Electron Device Lett. 30(7), 724–726 (2009). [CrossRef]
  13. J. Wu, W. Walukiewicz, K. M. Yu, W. J. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in InxGa1-xN alloys,” Appl. Phys. Lett. 80(25), 4741–4743 (2002). [CrossRef]
  14. P. G. Moses and C. G. Van de Walle, “Band bowing and band alignment in InGaN alloys,” Appl. Phys. Lett. 96(2), 021908 (2010). [CrossRef]
  15. Y. C. Yang, J. K. Sheu, M. L. Lee, C. K. Hsu, S. J. Tu, S. Y. Liu, C. C. Yang, and F. W. Huang, “Vertical InGaN light-emitting diodes with Ag paste as bonding layer,” Microelectron. Reliab. 52(5), 949–951 (2012). [CrossRef]
  16. J. Bai, C. C. Yang, M. Athanasiou, and T. Wang, “Efficiency enhancement of InGaN/GaN solar cells with nanostructures,” Appl. Phys. Lett. 104(5), 051129 (2014). [CrossRef]
  17. C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys. 51(8), 4494–4500 (1980). [CrossRef]
  18. R. Singh, D. Doppalapudi, T. D. Moustakas, and L. T. Romano, “Phase separation in InGaN thick films and formation of InGaN/GaN double heterostructures in the entire alloy composition,” Appl. Phys. Lett. 70(9), 1089–1091 (1997). [CrossRef]
  19. M. A. Green, Solar Cells: Operating Principles, Technology, and System Applications (Prentice-Hall, 1982).
  20. K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Evaluation of InGaP/InGaAs/Ge triple-junction solar cell and optimization of solar cell’s structure focusing on series resistance for high-efficiency concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells 90(9), 1308–1321 (2006). [CrossRef]
  21. R. R. King, D. Bhusari, D. Larrabee, X. Q. Liu, E. Rehder, K. Edmondson, H. Cotal, R. K. Jones, J. H. Ermer, C. M. Fetzer, D. C. Law, and N. H. Karam, “Solar cell generations over 40% efficiency,” Prog. Photovolt. Res. Appl. 20(6), 801–815 (2012). [CrossRef]
  22. K. Araki, M. Yamaguchi, T. Takamoto, E. Ikeda, T. Agui, H. Kurita, K. Takahashi, and T. Unno, “Characteristics of GaAs-based concentrator cells,” Sol. Energy Mater. Sol. Cells 66(1–4), 559–565 (2001). [CrossRef]
  23. G. S. Kinsey, P. Hebert, K. E. Barbour, D. D. Krut, H. L. Cotal, and R. A. Sherif, “Concentrator multi-junction solar cell characteristics under variable intensity and temperature,” Prog. Photovolt. Res. Appl. 16(6), 503–508 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited