OSA's Digital Library

Optics Express

Optics Express

  • Editor: J. H. Eberly
  • Vol. 5, Iss. 3 — Aug. 2, 1999
  • pp: 48–54

Stabilization of chaotic spatiotemporal filamentation in large broad area lasers by spatially structured optical feedback

Christian Simmendinger, Dietmar Preißr, and Ortwin Hess  »View Author Affiliations

Optics Express, Vol. 5, Issue 3, pp. 48-54 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (322 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In large high-power broad-area lasers the spatiotemporal filamentation processes and instabilities occur macroscopic as well as on microscopic scales. Numerical simulations on the basis of Maxwell-Bloch equations for large longitudinally and transversely extended semiconductor lasers reveal the internal spatial and temporal processes, providing the relevant scales on which control for stabilization consequently has to occur. It is demonstrated that the combined longitudinal instabilities, filamentation, and propagation effects may be controlled by suitable spatially structured delayed optical feedback allowing, in particular, the control of coherent regimes in originally temporally and spatially chaotic states.

© Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(270.3100) Quantum optics : Instabilities and chaos

ToC Category:
Focus Issue: Spatial and Polarization Dynamics of Semiconductor Lasers

Original Manuscript: April 8, 1999
Published: August 2, 1999

Christian Simmendinger, Dietmar Preiber, and Ortwin Hess, "Stabilization of chaotic spatiotemporal filamentation in large broad area lasers by spatially structured optical feedback," Opt. Express 5, 48-54 (1999)

Sort:  Journal  |  Reset  


  1. E. Ott, C. Grebogi, and J. A. Yorke, "Controlling chaos," Phys. Rev. Lett. 64, 1196-1199 (1990). [CrossRef] [PubMed]
  2. K. Pyragas, "Continuous control of chaos, by self-controlling feedback," Phys. Lett. A 170, 421-428 (1992). [CrossRef]
  3. C. Simmendinger and O. Hess, "Controlling delay-induced chaotic behavior of a semiconductor laser with optical feedback," Phys. Lett. A 216, 97-105 (1996). [CrossRef]
  4. M. Münkel, F. Kaiser and O. Hess, "Spatiotemporal dynamics of multi-stripe semiconductor lasers with delayed optical feedback," Phys. Lett. A 222, 67-75 (1996). [CrossRef]
  5. M. Münkel, F. Kaiser and O. Hess, "Suppression of instabilities leading to spatiotemporal chaos in semiconductor laser arrays by means of delayed optical feedback," Phys. Rev. E 56, 3868-3875 (1997). [CrossRef]
  6. I. Fischer, O. Hess, W. Elsaber and E. Gobel, "Complex Spatio-Temporal Dynamics in the Nearfield of a Broad-Area Semiconductor Laser," Europhys. Lett. 35, 579-584 (1996). [CrossRef]
  7. C. M. Bowden and G. P. Agrawal, "Maxwell-Bloch formulation for semiconductors: Effects of Coulomb exhange," Phys. Rev. A 51, 4132-4139 (1995). [CrossRef] [PubMed]
  8. J. Yao, G. P. Agrawal, P. Gallion and C. M. Bowden, "Semiconductor laser dynamics beyond the rate-equation approximation," Opt. Communic. 119, 246-255 (1995). [CrossRef]
  9. S. Balle, "Effective two-level-model with asymmetric gain for laser diodes," Opt. Commun. 119, 227-235 (1995). [CrossRef]
  10. C. Z. Ning, R. A. Indik, and J. V. Moloney, "Effective Bloch equations for semiconductor lasers and amplifiers," IEEE J. Quantum Electron. 33, 1543-1550 (1997). [CrossRef]
  11. O. Hess, S. W. Koch, and J. V. Moloney, "Filamentation and Beam Propagation in Broad-Area Semiconductor Lasers," IEEE J. Quantum Electron. QE-31, 35-43 (1995). [CrossRef]
  12. O. Hess and T. Kuhn, "Maxwell-Bloch equations for spatially inhomogeneous semiconductor lasers I: Theoretical Description," Phys. Rev. A 54, 3347-3359 (1996). [CrossRef] [PubMed]
  13. O. Hess and T. Kuhn, "Maxwell-Bloch equations for spatially inhomogeneous semiconductor lasers II: Spatio-temporal dynamics," Phys. Rev. A 54, 3360-3368 (1996). [CrossRef] [PubMed]
  14. E. Gehrig and O. Hess, "Nonequilibrium Spatiotemporal Dynamics of the Wigner-Distributions in Broad-Area Semiconductor Lasers," Phys. Rev. A 57, 2150-2163 (1998). [CrossRef]
  15. C. Simmendinger, M. Munkel, and O. Hess, "Controlling Complex Temporal and Spatio-Temporal Dynamics in Semiconductor Lasers," Chaos, Solitons & Fractals 10, 851-864 (1999).
  16. E. Gehrig, O. Hess, and W. Wallenstein, "Modeling of the Performance of High-Power Diode Amplifier Systems with an Opto-Thermal Microscopic Spatio-Temporal Theory," IEEE J. Quantum Electron. 35, 320-331 (1999). [CrossRef]
  17. O. Hess and T. Kuhn, "Spatio-Temporal Dynamics of Semiconductor Lasers: Theory, Modeling and Analysis," Prog. Quant. Electr. 20, 85-179 (1996). [CrossRef]
  18. I. S. Grieg and J. D. Morris, "A Hopscotch method for the Korteweg-de-Vries equation," J. Comp. Phys. 20, 60-84 (1976).
  19. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge University Press, Cambridge, 1989).
  20. O. Hess, Spatio-Temporal Dynamics of Semiconductor Lasers (Wissenschaft und Technik Verlag, Berlin, 1993).
  21. M. E. Bleich, D. Hochheiser, J. V. Moloney, and J. E. S. Socolar, "Controlling extended systems with spatially filtered, time-delayed feedback," Phys. Rev. E 55, 2119 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2.

Supplementary Material

» Media 1: MOV (2255 KB)     
» Media 2: MOV (1085 KB)     
» Media 3: MOV (8599 KB)     
» Media 4: MOV (4995 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited