OSA's Digital Library

Optics Express

Optics Express

  • Editor: J. H. Eberly
  • Vol. 6, Iss. 7 — Mar. 27, 2000
  • pp: 147–157

A Pulsed Finite-Difference Time-Domain (FDTD) Method for Calculating Light Scattering from Biological Cells Over Broad Wavelength Ranges

Rebekah Drezek, Andrew Dunn, and Rebecca Richards-Kortum  »View Author Affiliations

Optics Express, Vol. 6, Issue 7, pp. 147-157 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (546 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We combine the finite-difference time-domain method with pulse response techniques in order to calculate the light scattering properties of biological cells over a range of wavelengths simultaneously. The method we describe can be used to compute the scattering patterns of cells containing multiple heterogeneous organelles, providing greater geometric flexibility than Mie theory solutions. Using a desktop computer, we calculate the scattering patterns for common homogeneous models of biological cells and also for more complex representations of cellular morphology. We find that the geometry chosen significantly impacts scattering properties, emphasizing the need for careful consideration of appropriate theoretical models of cellular scattering and for accurate microscopic determination of optical properties.

© Optical Society of America

OCIS Codes
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(290.0290) Scattering : Scattering

ToC Category:
Research Papers

Original Manuscript: February 11, 2000
Published: March 27, 2000

Rebekah Drezek, Andrew Dunn, and Rebecca Richards-Kortum, "A pulsed finite-difference time-domain (FDTD) method for calculating light scattering from biological cells over broad wavelength ranges," Opt. Express 6, 147-157 (2000)

Sort:  Journal  |  Reset  


  1. R. Marchesini, M. Brambilla, C. Clemente, M. Maniezzo, A. Sichirollo, A. Testori, D. Venturoli, and N. Cascinelli, "In vivo spectrophotometric evaluation of neoplastic and non-neoplastic skin pigmented lesions. I, Reflectance measurements," Photochem. Photobiol. 53, 77-84 (1991). [CrossRef] [PubMed]
  2. J. Mourant, I. Bigio, J. Boyer, T. Johnson, R. Conn, T. Johnson, and T. Shimada, "Spectroscopic diagnosis of bladder cancer with elastic light scattering," Lasers Surg. Med. 17, 350-357 (1995). [CrossRef] [PubMed]
  3. J. Mourant, I. Bigio, J. Boyer, T. Johnson, and J. Lacey, "Elastic scattering spectroscopy as a diagnostic for differentiating pathologies in the gastrointestinal tract: preliminary testing," J. Biomed. Opt. 1, 192-199 (1996). [CrossRef] [PubMed]
  4. Z. Ge, K. Schomacker, and N. Nishioka, "Identification of colonic dysplasia and neoplasia by diffuse reflectance spectroscopy and pattern recognition techniques," Appl. Spectrosc. 52, 833-839 (1998). [CrossRef]
  5. G. Zonios, L. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. Feld, "Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo," Appl. Opt. 38, 6628-6637 (1999). [CrossRef]
  6. J. Mourant, T. Fuselier, J. Boyer, T. Johnson, and I. Bigio, "Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms," Appl. Opt. 36, 949-957 (1997). [CrossRef] [PubMed]
  7. L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. Crawford, and M. Feld, "Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution," Opt. Lett. 80, 627-630.
  8. V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. Dasari, L. Perelman, and M. Feld, "Polarized light scattering spectroscopy for quantitative measurement of epithelial structures in situ," IEEE J. Sel. Topics Quantum Electron. 5, (1999). [CrossRef]
  9. K. Sokolov, R. Drezek, K. Gossage, and R. Richards-Kortum, "Reflectance spectroscopy with polarized light: is it sensitive to cellular and nuclear morphology," Opt. Lett. 5, 302-317 (1999).
  10. J. Mourant, J. Freyer, A. Hielscher, A. Eick, D. Shen, and T. Johnson, "Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics," Appl. Opt. 37, 3586-3593 (1998). [CrossRef]
  11. L. McGann, M. Walterson, L. Hogg, "Light scattering and cell volumes in osmotically stressed and frozen thawed cells," Cytometry. 9, 33-38 (1988). [CrossRef] [PubMed]
  12. A. Brunsting and P. Mullaney, "Light scattering from coated spheres: model for biological cells," Appl. Opt. 3, 675-680 (1972). [CrossRef]
  13. P. Sloot, and C. Figdor, "Elastic light scattering from nucleated blood cells: rapid numerical analysis," Appl. Opt. 25, 3559-3565 (1986). [CrossRef] [PubMed]
  14. A. Taflove, Computational Electrodynamics: The Finite Difference Time Domain Method (Artech, Boston, 1995).
  15. Z. Liao, H. Wong, B. Yang, and Y. Yuan, "A transmitting boundary for transient wave analysis," Sci. Sin. Ser. A. 27, 1063-1076 (1984).
  16. J Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114, 185-200 (1994). [CrossRef]
  17. A. Dunn, C. Smithpeter, A. Welch, and R. Richards-Kortum, "Finite-Difference Time-Domain Simulation of Light Scattering from Single Cells," J. Biomed. Opt. 2, 262-266 (1997). [CrossRef] [PubMed]
  18. A. Dunn, and R. Richards-Kortum, "Three-dimensional computation of light scattering from cells," IEEE J. Sel. Topics Quantum Electron. 2, 898-894 (1996). [CrossRef]
  19. R. Drezek, A. Dunn, and R. Richards-Kortum," Light scattering from cells: finite-difference time-domain simulations and goniometric measurements," Appl. Opt. 38, 3651-3661 (1999). [CrossRef]
  20. C. Furse, S. Mathur, and O. Gandi, "Improvements to the finite-difference time-domain method for calculating the radar cross section of a perfectly conducting target," IEEE Trans. Microwave Theory Tech. 38, 919-927 (1990). [CrossRef]
  21. C. Britt, "Solution of electromagnetic scattering problems using time domain techniques," IEEE Trans. Antennas Propagat. 37, 1181-1192 (1989). [CrossRef]
  22. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1957).
  23. R. Meyer, "Light scattering from biological cells: dependence of backscatter radiation on membrane thickness and refractive index," Appl. Opt. 18, 585-590 (1979). [CrossRef] [PubMed]
  24. M. Anderson, J. Jordon, A. Morse, and F. Sharp, A Text and Atlas of Integrated Colposcopy. (Mosby, St. Louis, 1993).
  25. C. MacAulay, and B. Palcic, "Fractal texture features based on optical density surface area: use in image analysis of cervical cells," Analyt. Quant. Cytol. Histo. 12, 394-398 (1990).
  26. B. Palcic, D. Garner, and C. MacAulay, "Image cytometry and chemoprevention in cervical cancer," J Cell Biochem (Suppl). 23, 43-54 (1995). [CrossRef]
  27. A. Taflove, Advances in Computational Electrodynamics: The Finite Difference Time Domain Method (Artech, Boston, 1998).
  28. A. Dunn, Light Scattering Properties of Cells. PhD Dissertation, (University of Texas at Austin, Austin, TX, 1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig 2. Fig 3.
Fig 4.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited