OSA's Digital Library

Optics Express

Optics Express

  • Editor: J. H. Eberly
  • Vol. 7, Iss. 3 — Jul. 31, 2000
  • pp: 113–122

Experimental and scalar beam propagation analysis of an air-silica microstructure fiber

C. E. Kerbage, B. J. Eggleton, P. S. Westbrook, and R. S. Windeler  »View Author Affiliations


Optics Express, Vol. 7, Issue 3, pp. 113-122 (2000)
http://dx.doi.org/10.1364/OE.7.000113


View Full Text Article

Enhanced HTML    Acrobat PDF (714 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the higher order guided modes in an air-silica microstructure fiber comprising a ring of six large air-holes surrounding a Germanium doped core. We characterize the modes experimentally using an intra-core Bragg grating. The experimentally observed modes are then accurately modeled by beam propagation simulations using an index profile similar to the observed fiber cross section. Theory and experiment confirm the presence of “inner cladding” modes with approximate cylindrical symmetry near the core, similar to conventional cladding modes, but which strongly exhibit the symmetry of the microstructure at large radius. Such modes are useful in fabricating robust tunable grating filters and we show that the Bragg grating is a useful diagnostic to measure their effective indices and intensity profiles.

© Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2310) Fiber optics and optical communications : Fiber optics
(230.3990) Optical devices : Micro-optical devices

ToC Category:
Research Papers

History
Original Manuscript: June 15, 2000
Published: July 31, 2000

Citation
Charles Kerbage, Benjamin Eggleton, Paul Westbrook, and Robert Windeler, "Experimental and scalar beam propagation analysis of an air-silica microstructure fiber," Opt. Express 7, 113-122 (2000)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-7-3-113


Sort:  Journal  |  Reset  

References

  1. P. Kaiser and H. W. Astle, "Low-loss single-material fibers made from pure fused silica," The Bell System Technical Journal 53, 1021-1039 (1974).
  2. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic bandgap guidance of light in air," Science 285, 1537-1539 (1999). [CrossRef] [PubMed]
  3. T. A. Birks, J. C. Knight, and P. S. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997). [CrossRef] [PubMed]
  4. A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, and T. A. Strasser, "Electrically tunable efficient broad-band fiber filter," IEEE Photonics Tech. Lett. 11, 445-447 (1999). [CrossRef]
  5. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Optical properties of high-delta air-silica microstructure optical fibers", Opt. Lett. 25, 796-798 (2000). [CrossRef]
  6. B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spalter, and T. A. Strasser, "Grating resonances in air-silica microstructures," Opt. Lett. 24, 1460-1462 (1999). [CrossRef]
  7. P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, "Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings," IEEE Photonics Tech. Lett. 12, 495-497 (2000). [CrossRef]
  8. B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, G. Burdge, "Cladding mode resonances in air-silica microstructure fiber," J. Lightwave Technology, In Press, August issue (2000). [CrossRef]
  9. B. J. Eggleton, P. S. Westbrook, R. S. Windeler, T. A. Strasser, G. Burdge, "Grating spectra in air-silica microstructure fibers," OFC 2000, ThI2, Baltimore, Maryland (2000).
  10. P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. Burdge, "Control of waveguide properties in hybrid polymer-silica microstructured optical fiber gratings," OFC 2000, ThI3, Baltimore, Maryland (2000).
  11. D. B. Stegall and T. Erdogan, " Dispersion control with use of long-period fiber gratings," J. Opt. Soc. Am. A 17, 304-312 (2000). [CrossRef]
  12. R. Kayshap, Fiber Bragg Gratings, (1st edition ed: Academic Press, 1999).
  13. Turan Erdogan, "Fiber grating spectra," J. Lightwave Technology 15, 1277-1294 (1997). [CrossRef]
  14. R. P. Espindola, R. S. Windeler, A. A. Abramov, B. J. Eggleton, T . A. Strasser, and D. J. DiGiovanni, "External refractive index insensitive air-clad Long Period Fiber Grating," Electron. Lett. 35, 327-328 (1999). [CrossRef]
  15. Andreas Othonos, "Fiber Bragg gratings," Rev. Sci. Instrum. 68, (1997). [CrossRef]
  16. M. D. Feit and J. A. Fleck, Jr. "Computation of mode eigenfunctions in graded-index optical fibers by the propagating beam method," Appl. Opt. 19, 2240-2246 (1980). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited