OSA's Digital Library

Optics Express

Optics Express

  • Editor: J. H. Eberly
  • Vol. 8, Iss. 7 — Mar. 26, 2001
  • pp: 458–474

A high numerical aperture parabolic mirror as imaging device for confocal microscopy

M. A. Lieb and A. J. Meixner  »View Author Affiliations


Optics Express, Vol. 8, Issue 7, pp. 458-474 (2001)
http://dx.doi.org/10.1364/OE.8.000458


View Full Text Article

Enhanced HTML    Acrobat PDF (658 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We explore the diffraction limited focusing and confocal imaging properties of a high NA parabolic mirror for confocal imaging and spectroscopy of nanoparticles and single molecules. Vector field calculations of the electric fields near focus for both linear and radially polarized illumination are discussed and show that the optical field can be similar tightly focused as in the case of a high NA objective lens. Furthermore they show that a high NA parabolic mirror allows an easy orientation of the polarization of the illuminating light in all spatial directions. The simulation of confocal imaging of single molecules is discussed and yields, that the use of radially polarized excitation light gives an easy access to their orientations.

© Optical Society of America

OCIS Codes
(180.1790) Microscopy : Confocal microscopy
(180.2520) Microscopy : Fluorescence microscopy
(230.4040) Optical devices : Mirrors

ToC Category:
Research Papers

History
Original Manuscript: February 7, 2001
Published: March 26, 2001

Citation
M. Lieb and Alfred Meixner, "A high numerical aperture parabolic mirror as imaging device for confocal microscopy," Opt. Express 8, 458-474 (2001)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-8-7-458


Sort:  Journal  |  Reset  

References

  1. W. P. Ambrose, T. Basché, and W. E. Moerner, "Detection and spectroscopy of single pentacene molecules in a p-terphenyl crystal by means of fluorescence excitation," J. Chem. Phys. 95, 7150-7163 (1991). [CrossRef]
  2. L. Fleury, P. Tamarat, B. Lounis, J. Bernard, and M. Orrit. "Fluorescence spectra of single pentacene molecules in p-terphenyl at 1.7 K," Chem. Phys. Lett. 236, 87-95 (1995). [CrossRef]
  3. H. van der Meer, J. A. J. M. Disselhorst, J. Koehler, A. C. J. Brouwer, E. J. J. Groenen, and J. Schmidt, "An insert for single-molecule magnetic-resonance spectroscopy in an external magnetic field," Rev. Sci. Instrum. 66, 4853-4856 (1995). [CrossRef]
  4. Y. Durand, J. C. Woehl, B. Viellerobe, W. Göhde, and M. Orrit, "New design of a cryostat-mounted scanning near-field optical microscope for single molecule spectroscopy," Rev. Sci. Instrum. 70, 1318-1325 (1999). [CrossRef]
  5. J. Enderlein, T. Ruckstuhl, and S. Seeger, "Highly efficient optical detection of surface-generated fluorescence," Appl. Opt. 38, 724-732 (1999). [CrossRef]
  6. K. S. Youngworth and T. G. Brown, "Focusing of high numerical aperture cylindrical-vector beams," Opt. Express 7, 77-87 (2000), http://www.opticsexpress.org/oearchive/source/22809.htm [CrossRef] [PubMed]
  7. L. Novotny, E. J. Sánchez, and X. S. Xie, "Near-field optical imaging using metal tips illuminated by higher-order Hermite-Gaussian beams," Ultramicroscopy 71, 21-29 (1998). [CrossRef]
  8. E. J. Sánchez, L. Novotny, and X. S. Xie, "Near-field fluorescence microscopy based on two-photon excitation with metal tips," Phys. Rev. Lett. 82, 4014-4017 (1999). [CrossRef]
  9. B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system," Proc. Roy. Soc. A 253, 358-379 (1959). [CrossRef]
  10. V. S. Ignatovsky, "Diffraction by a parabolic mirror having arbitrary opening," Trans. Opt. Inst. Petrograd 1, paper 5 (1920), in Russian.
  11. C. J. R. Sheppard, A. Choudhury, and J. Gannaway, "Electromagnetic field near the focus of wide-angular lens and mirror systems," IEE J. Microw. Opt. Acoust. 1, 129-132 (1977). [CrossRef]
  12. R. Barakat, "Diffracted electromagnetic fields in the neighborhood of the focus of a paraboloidal mirror having a central obscuration," Appl. Opt. 26, 3790-3795 (1987). [CrossRef] [PubMed]
  13. P. Varga and P. Török, "Focusing of electromagnetic waves by paraboloid mirrors. I. Theory," J. Opt. Soc. Am. A 17, 2081-2089 (2000). [CrossRef]
  14. P. Varga and P. Török, "Focusing of electromagnetic waves by paraboloid mirrors. II. Numerical results," J. Opt. Soc. Am. A 17, 2090-2095 (2000). [CrossRef]
  15. E. Wolf, "Electromagnetic diffraction in optical systems. I. An integral representation of the image field," Proc. Roy. Soc. A 253, 349-357 (1959). [CrossRef]
  16. J. J. Stamnes, Waves in focal regions, (Hilger, Bristol, UK, 1986), Sec. 16.1.2.
  17. R. H. Jordan and D. G. Hall, "Free-space azimuthal paraxial wave-equation: the azimuthal Bessel-Gauss beam solution," Opt. Lett. 19, 427-429 (1994). [CrossRef] [PubMed]
  18. D. G. Hall, "Vector-beam solutions of Maxwell's wave equation," Opt. Lett. 21, 9-11 (1996). [CrossRef] [PubMed]
  19. P. L. Greene and D. G. Hall, "Diffraction characteristics of the azimuthal Bessel-Gauss beam," J. Opt. Soc. Am. A 13, 962-966 (1996). [CrossRef]
  20. P. L. Greene and D. G. Hall, "Properties and diffraction of vector Bessel-Gauss beams," J. Opt. Soc. Am. A 15, 3020-3027 (1998). [CrossRef]
  21. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000). [CrossRef]
  22. J. J. Wynne, "Generation of the rotationally symmetric TE01 and TM01 modes from a wavelength-tunable laser," IEEE J. Quant. Elec. QE-10, 125-127 (1974). [CrossRef]
  23. R. Yamaguchi, T. Nose, and S. Sato, "Liquid crystal polarizers with axially symmetrical properties," Jpn. J. Appl. Phys. Pt. 1 28, 1730-1731 (1989). [CrossRef]
  24. S. C. Tidwell, D. H. Ford, and W. D. Kimura, "Generating radially polarized beams interferometrically," Appl. Opt. 29, 2234-2239 (1990). [CrossRef] [PubMed]
  25. E. G. Churin, J. Hoßfeld, and T. Tschudi, "Polarization configurations with singular point formed by computer generated holograms," Opt. Commun. 99, 13-17 (1993). [CrossRef]
  26. S. C. Tidwell, G. H. Kim, and W. D. Kimura, "Efficient radially polarized laser-beam generation with a double interferometer," Appl. Opt. 32, 5222-5229 (1993). [CrossRef] [PubMed]
  27. M. Stalder and M. Schadt, "Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters," Opt. Lett. 21, 1948-1950 (1996). [CrossRef] [PubMed]
  28. K. S. Youngworth and T. G. Brown, "Inhomogenous polarization in scanning optical microscopy," in Three-Dimensional and Multidimensional Microscopy: Image Acquisition Processing VII,J.-A.Conchello,C.J. Cogswell, T. Wilson, editors, Proc. SPIE 3919, 75-85 (2000).
  29. M. Schrader and S. W. Hell, "Wavefronts in the focus of a light microscope," J. Microsc. 184, 143-148 (1996).
  30. C. J. R. Sheppard, "Aberrations in high aperture optical systems," Optik 105, 29-33 (1997).
  31. J. Sepiol, J. Jasny, J. Keller, and U. P. Wild, "Single molecules observed by immersion mirror objective. The orientation of terrylene molecules via the direction of its transition dipole moment," Chem. Phys. Lett. 273, 444- 448 (1997). [CrossRef]
  32. R. M. Dickson, D. J. Norris, and W. E. Moener, "Simultaneous imaging of individual molecules aligned both parallel and perpendicular to the optic axis," Phys. Rev. Lett. 81, 5322-5325 (1998). [CrossRef]
  33. T. Ha, T. A. Laurence, D. S. Chemla, and S. Weiss, "Polarization spectroscopy of single fluorescent molecules," J. Phys. Chem. B 103, 6839-6850 (1999). [CrossRef]
  34. B. Sick, B. Hecht, and L. Novotny, "Orientational imaging of single molecules by annular illumination," Phys. Rev. Lett. 85, 4482-4485 (2000). [CrossRef] [PubMed]
  35. C. J. R. Sheppard and M. Gu, "Imaging by a high aperture optical system," J. Mod. Opt. 40, 1631-1651 (1993). [CrossRef]
  36. C. J. R. Sheppard and P. Török, "An electromagnetic theory of imaging in fluorescence microscopy, and imaging in polarization fluorescence microscopy," Bioimaging 5, 205-218 (1997). [CrossRef]
  37. J. Enderlein, "Theoretical study of detection of a dipole emitter through an objective with high numerical aperture," Opt. Lett. 25, 634-636 (2000). [CrossRef]
  38. J. D. Jackson, Classical Electrodynamics, second edition (Wiley & Sons, New York, USA, 1975), Chap. 9.2.
  39. T. Plakhotnik, E. A. Donley, and U. P. Wild, "Single-molecule spectroscopy," Annu. Rev. Phys. Chem. 48, 181- 212 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (400 KB)      QuickTime
» Media 2: MOV (91 KB)      QuickTime
» Media 3: MOV (97 KB)      QuickTime

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited