OSA's Digital Library

Optics Express

Optics Express

  • Editor: J. H. Eberly
  • Vol. 9, Iss. 1 — Jul. 2, 2001
  • pp: 9–15

Rotating scale-invariant electromagnetic fields

Jani Tervo and Jari Turunen  »View Author Affiliations


Optics Express, Vol. 9, Issue 1, pp. 9-15 (2001)
http://dx.doi.org/10.1364/OE.9.000009


View Full Text Article

Enhanced HTML    Acrobat PDF (230 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The concept of scalar fields with uniformly rotating intensity distributions and propagation-invariant radial scales is extended to the case of electromagnetic fields with rotating but otherwise propagation-invariant states of polarization. It is shown that the conditions for field rotation are different for scalar and electromagnetic fields and that the electromagentic analysis brings in new aspects such as the possibility that different components of a rotating electromagnetic field can rotate in opposite directions.

© Optical Society of America

OCIS Codes
(260.5430) Physical optics : Polarization
(350.5500) Other areas of optics : Propagation

ToC Category:
Research Papers

History
Original Manuscript: May 8, 2001
Published: July 2, 2001

Citation
Jani Tervo and Jari Pekka Turunen, "Rotating scale-invariant electromagnetic fields," Opt. Express 9, 9-15 (2001)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-9-1-9


Sort:  Journal  |  Reset  

References

  1. W. D. Montgomery, "Self-imaging objects of infinite aperture," J. Opt. Soc. Am. 57 772-778 (1967). [CrossRef]
  2. W. D. Montgomery, "Algebraic formulation of diffraction applied to self imaging," J. Opt. Soc. Am. 58 1112-1124 (1968). [CrossRef]
  3. J. Durnin, "Exact solutions for nondiffracting beams. I. The scalar theory," J. Opt. Soc. Am. A 4 651-654 (1987). [CrossRef]
  4. J. Durnin, J. J. Miceli, Jr., and J. H. Eberly, "Diffraction-free beams," Phys. Rev. Lett. 58 1499-1501 (1987). [CrossRef] [PubMed]
  5. S. Ch�vez-Cerda, G. S. McDonald, and G. H. S. New, "Nondiffracting Beams: travelling, standing, rotating and spiral waves," Opt. Commun. 123 225-233 (1996). [CrossRef]
  6. C. Paterson and R. Smith, "Higher-order Bessel waves produced by axicon-type computer-generated holograms," Opt.Commun. 124 121-130 (1996). [CrossRef]
  7. V. V. Kotlyar, V. A. Soifer and S. N. Khonina, "An algorithm for the generation of laser-beams with longitudinal periodicity," J. Mod. Opt. 44 1409-1416 (1997). [CrossRef]
  8. P. P��kk�nen, J. Lautanen, M. Honkanen, M. Kuittinen, J. Turunen, S. N. Khonina, V. V. Kotlyar, V. A. Soifer and A. T. Friberg, "Rotating optical fields: experimental demonstration with diffractive optics," J. Mod. Opt. 46 2355-2369 (1998). [CrossRef]
  9. S. N. Khonina, S. N., V. V. Kotlyar, V. A. Soifer, J. Lautanen, M. Honkanen, and J. Turunen, "Generating a couple of rotating nondiffracting beams using a binary-phase DOE," Optik 110 137-144 (1999).
  10. S. R. Mishra, "A vector wave analysis of a Bessel beam," Opt. Commun. 85 159-161 (1991). [CrossRef]
  11. J. Turunen and A. T. Friberg, "Self-imaging and propagation-invariance in electromagnetic fields," Pure Appl. Opt. 2 51-60 (1993). [CrossRef]
  12. Z. Bouchal and M. Oliv�k, "Non-diffractive vector Bessel beams," J. Mod. Opt. 8 1555-1566 (1995). [CrossRef]
  13. Z. Bouchal, R. Hor�k and J. Wagner, "Propagation-invariant electromagnetic fields," J. Mod. Opt. 9 1905-1920 (1996). [CrossRef]
  14. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995), sect.3.2.
  15. G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists (Academic Press, New York, 2001), p. 681.
  16. H. F. Talbot, "Facts relating to optical science, No. IV," Philos. Mag. 9 401-407 (1836).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (1568 KB)     
» Media 2: MOV (1388 KB)     
» Media 3: MOV (1249 KB)     
» Media 4: MOV (1404 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited