OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 10, Iss. 8 — Apr. 22, 2002
  • pp: 382–387
« Show journal navigation

Soliton transmission and supercontinuum generation in holey fiber, using a diode pumped Ytterbium fiber source

J. H. V. Price, W. Belardi, T. M. Monro, A. Malinowski, A. Piper, and D. J. Richardson  »View Author Affiliations


Optics Express, Vol. 10, Issue 8, pp. 382-387 (2002)
http://dx.doi.org/10.1364/OE.10.000382


View Full Text Article

Acrobat PDF (726 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report linear dispersion compensation, soliton pulse formation, soliton compression, and ultra-broad supercontinuum generation in a holey fiber with anomalous dispersion at wavelengths above 800nm. The holey fiber was seeded with ultrashort pulses from a diode pumped, Ytterbium (Yb)-doped fiber source operating at 1.06 μm. The results highlight the compatibility of the rapidly developing holey fiber technology with short pulse Yb-doped fiber lasers for wide application.

© 2002 Optical Society of America

1. Introduction

The use of soliton effects such as nonlinear pulse compression, propagation, and the soliton self-frequency shift (SSFS) in optical fiber have been exploited in a variety of sources operating at wavelengths above 1.3 μm, most commonly using lasers based on erbium doped fiber which operate around 1550nm 1

1. G. P. Agrawal, Nonlinear Fiber Optics, Academic Press (San Diego, CA), 2nd Edition (1995)

. However it has not been possible to exploit soliton effects within sources operating in the visible and near infrared regions of the spectrum, since conventional single mode fibers display normal dispersion at wavelengths below 1.3 μm. Holey fiber technology, which allows for a far broader range of fabrication parameters compared to conventional doped fiber fabrication techniques, means that it is possible to design and make fibers with dispersion and non-linear properties outside of the previously accessible parameter ranges2

2. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, “Holey optical fibers: An efficient modal model,” Journal of Lightwave Technology 17, 1093–1102 (1999). [CrossRef]

,3

3. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technology Letters 12, 807–809 (2000). [CrossRef]

. Indeed, holey fiber with anomalous dispersion at wavelengths as short as 500 nm has recently been demonstrated3

3. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technology Letters 12, 807–809 (2000). [CrossRef]

, and similar fibers have been shown to be capable of supporting soliton propagation over a distance of ~3 soliton periods when seeded from a Ti: Sapphire laser operating at 800nm. In addition to soliton effects, both holey fibers and tapered standard fibers have been demonstrated to generate broadband supercontinuum light when pumped with short pulses at around 800nm4

4. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000). [CrossRef]

,5

5. T. A. Birks, W. J. Wadsworth, and P. S. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000). [CrossRef]

, which has enabled significant new developments in spectroscopy6

6. R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000). [CrossRef] [PubMed]

and metrology 7

7. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000). [CrossRef] [PubMed]

. To date, supercontinuum spectra have been reported spanning from below 300nm in the UV8

8. J. H. Price, K. Furusawa, T. M. Monro, C. Netti, A. Malinowski, J. J. Baumberg, and D. J. Richardson, “Phase matched UV Generation in a silica holey fiber,” Confenence on Lasers and Electro-optics (CLEO 2002), session CTuB, OSA

to wavelengths beyond 1600nm.

Whilst the bulk Ti: Sapphire systems used to seed the initial demonstrations of soliton and supercontinuum effects in holey fiber are suitable for research, they are far from ideal if one wishes to develop practical sources based on holey fiber technology. However, over recent years a number of practical, diode-pumped ultrafast laser and amplifier systems based on Yb-doped fiber have been developed. In this letter, we demonstrate that these systems are capable of achieving the pulse durations and energies required to exploit the unusual nonlinear properties of holey fibers. For example, the inherent normal dispersion of conventional fibers around 1μm means that it has previously been necessary to use bulk elements such as gratings/prisms in these systems to provide the required dispersion compensation. Working towards the possibility of replacing these bulk elements with more compact fiber-based dispersion compensation, we present the first direct demonstration of linear dispersion compensation using holey fiber. We also present results showing soliton formation and compression, soliton propagation without temporal broadening over 60m of fiber (corresponding to ~475 soliton periods), and SSFS wavelength tuning (1.06 –1.1 μm). All of these experiments were seeded using the output from a practical, diode pumped, stretched-pulse, Yb-doped fiber laser operating at ~1.06μm. Finally, by amplifying the laser seed pulses using diode-pumped, Yb-doped fiber amplifiers, we generated ultra broadband visible supercontinuum in small core holey fiber.

2. Experimental setup and results

A scanning electron microgram (SEM) image of the robust, jacketed, polarization-maintaining holey fiber used in our experiments is shown inset to Fig. 1. The fiber has a small ~1.6μm diameter core with an effective mode area (Aeff) ~3μm2 at λ=1.06μm, approximately 20 times smaller than for conventional fibers at this wavelength. The small core also gives rise to the increased power densities and hence high effective nonlinearity of this fiber1

1. G. P. Agrawal, Nonlinear Fiber Optics, Academic Press (San Diego, CA), 2nd Edition (1995)

. The dispersion of the fiber also differs from that of standard fiber because the small diameter core together with the large air fill fraction in the cladding results in an exceptionally strong (anomalous) waveguide contribution to the dispersion. This can dominate the (normal) material dispersion of silica to provide fiber with overall anomalous dispersion at wavelengths below 1.3 μm where all conventional fibers have normal dispersion. The fiber in Fig. 1 has a zero dispersion wavelength (λ0) of ~800nm (predicted with a full vector numerical model2

2. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, “Holey optical fibers: An efficient modal model,” Journal of Lightwave Technology 17, 1093–1102 (1999). [CrossRef]

, using the SEM photograph of the fiber to define the transverse refractive index distribution). The high (measured) transmission loss of ~1dB/m is principally due to confinement loss, and can be greatly reduced by adding more rings of holey structure around the core. This was done to produce the fiber used for the supercontinuum demonstration reported in this paper, which had a much-reduced loss of 0.1dB/m, and similar fibers with losses as low as 0.01dB/m (at 1550nm) have been reported11

11. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “Optical properties of a low-loss polarization-maintaining photonic crystal fiber,” Opt. Express 9, 676–680 (2001). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-676 [CrossRef] [PubMed]

. The fiber is rigorously single mode at wavelengths above 1μm, but will support higher order modes at shorter wavelengths. However, the confinement losses increase rapidly at shorter wavelengths, attenuating these higher order modes, so the fiber is effectively single mode down into the visible regions of the spectrum. The fiber is highly suitable for polarization maintaining applications, having a birefringence length of just 1.15mm at 1.06 μm wavelength (polarisation extinction ~21dB between fiber axes). This high birefringence arises from the combination of core asymmetry, high refractive index contrast and small-scale structure.

Fig. 1. Experimental system configuration. Inset: SEM of holey fiber used for the pulse compression and preliminary soliton experiments.

2.1 Linear dispersion compensation and soliton formation

The experimental setup of the mode-locked seed laser and launch arrangement are shown in Fig. 1. We used an Yb-doped, stretched pulse fiber laser that was developed in-house as our master oscillator 12

12. L. Lefort, J. H. Price, D. J. Richardson, G. J. Spuhler, R. Paschotta, U. Keller, A. Fry, and J. Weston, “Practical Low-Noise stretched-pulse Yb3+ -doped fiber laser,” Opt. Lett. 27, 1–3 (2002). [CrossRef]

. For supercontinuum generation we amplified the pulses in diode-pumped Yb-doped fiber amplifiers. Mode-locked operation of the laser is based upon the stretched pulse principle13

13. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-Fs Pulse Generation from a Stretched-Pulse Mode-Locked All- Fiber Ring Laser,” Opt. Lett. 18, 1080–1082 (1993). [CrossRef] [PubMed]

employing nonlinear polarisation rotation within the fiber as a fast saturable absorber mechanism. A semiconductor saturable absorber mirror (SESAM) is incorporated to ensure robust self-starting 14

14. M. H. Ober, M. Hofer, U. Keller, and T. H. Chiu, “Self-Starting Diode-Pumped Femtosecond Nd Fiber Laser,” Opt. Lett. 18, 1532–1534 (1993). [CrossRef] [PubMed]

. The laser is pumped with a telecommunications grade laser diode, which results in a highly reliable and stable oscillator. The measured amplitude noise is just ~0.05% (10Hz resolution bandwidth). The average laser output power was ~3 mW at a pulse repetition rate of 54 MHz (~60 pJ pulse energy). The laser produces positively chirped pulses at its output port with a FWHM duration of 2.4ps (see autocorrelation in Fig. 2.a), compressible down to ~110fs (ΔνΔτ~0.6) using a bulk grating pair.

Fig. 2. shows the results obtained by launching the ~2.4ps duration positively chirped Gaussian pulses directly from the laser into a length of the HF and recording the non-collinear second-harmonic-generation (SHG) autocorrelations and optical spectra of the transmitted pulses. We used a half wave plate at the launch to match the pulse polarisation to a principal axis of the highly birefringent fiber. Without taking this precaution, components of the pulses launched on to the orthogonal fiber axes were observed to walk-off temporally due to the difference in dispersion between the axes, complicating the interpretation of the experiments. We present data for two launched pulse energies: 1pJ, for which the propagation is close to linear over the propagation lengths considered, and 20 pJ, for which significant nonlinear effects become apparent. Starting with a fiber length of ~2.6m (estimated transmission loss ~2dB) we gradually cut back the fiber length to record the evolution of the pulses as a function of propagation distance.

Fig.2. Results obtained launching pulses directly from the laser into 2.2 m length of holey fiber. a) Plot of transmitted pulse FWHM vs. fiber length. b)-d) Autocorrelation and inset spectra of pulses transmitted through holey fiber: b) linear regime (1pJ pulses), fiber length = 1.15 m c) non-linear regime (20pJ pulses), fiber length = 0.92 m, d)non-linear regime, Raman scattering, fiber length = 2.02m.

Fig. 2.a) shows a plot of the pulse FWHM vs. fiber length for pulses in both the linear (1pJ) and nonlinear (20 pJ) regime. As expected for linear compression of an initially chirped pulse, the 1pJ pulses are seen to initially compress, reach a minimum duration after ~1.2m, and then to broaden again. The linearity of the compression process is confirmed by the inset spectrum Fig. 2b) in which only a modest spectral broadening is observed at the point of maximum linear pulse compression. Compression by a factor of ~14 to a minimum duration of 170 fs is observed, with some higher order phase distortion remaining when compared with the minumum duration of 108fs obtained when we compressed the pulses with a grating pair. Fitting the data of Fig. 2a) 1

1. G. P. Agrawal, Nonlinear Fiber Optics, Academic Press (San Diego, CA), 2nd Edition (1995)

we estimate the dispersion of the fiber to be =150 ps/(nm.km). We believe that this is the first direct demonstration of linear dispersion compensation in a holey fiber with anomalous dispersion at wavelengths below 1.3 μm.

In the non-linear regime (20pJ pulses), Fig. 2.a) indicates soliton propagation with minimal temporal pulse broadening over ~2.6 m of fiber. We calculate this to correspond to ~ 20 soliton periods (as defined by the minimum compressed pulse width and the above estimated HF dispersion). The shortest compressed pulses have a duration of 60 fs (see autocorrelation shown in Fig. 2.c). The symmetric spectrum inset to Fig. 2.c) (propagation through 0.92m of fiber) indicates the effects of SPM, whereas the spectrum in Fig. 2.d) (propagation through 2.02m of fiber) shows a distinct peak at 1.075 μm, which is evidence of the soliton self-frequency shift. The low pulse energies (20pJ, 200 W typical peak power) and ~1m lengths of this fiber required to form solitons4

4. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000). [CrossRef]

,9

9. J. H. Price, W. Belardi, L. Lefort, T. M. Monro, and D. J. Richardson, “Nonlinear pulse compression, dispersion compensation, and soliton propagation in holey fiber at 1 micron,” in Nonlinear Guided Waves and Their Applications, OSA Technical Digest (optical Society of America, Washington, DC, 2001), pp. 430–432.

,10

10. W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre, and P. S. J. Russell, “Soliton effects in photonic crystal fibres at 850 nm,” Electron. Lett. 36, 53–55 (2000). [CrossRef]

, are at least an order of magnitude lower than those previously required for similar experiments in conventional fiber at 1550nm1

1. G. P. Agrawal, Nonlinear Fiber Optics, Academic Press (San Diego, CA), 2nd Edition (1995)

, making these nonlinear effects readily accessible for practical applications.

2.2 Soliton transmission and supercontinuum generation

Launching the uncompressed amplified parabolic pulses (strong positive chirp, FWHM ~6ps) directly into a 60m length of the holey fiber shown in Fig. 3.a), we observed dramatic temporal pulse compression and SSFS wavelength tuning. For low launched pulse energies (below ~10pJ), we again observed that the transmitted spectrum was undistorted but the pulses were temporally broadened (beyond the ~50ps measurement capability of our autocorrelator) due to the excess anomalous dispersion of the fiber. However, on increasing the launched pulse energy above ~20pJ, the FWHM of the transmitted pulses reduced to below 1ps, and for launched pulse energies around ~70pJ, the FWHM remained constant at ~400fs. Fig. 3.b) shows the SHG autocorrelation of the 400fs transmitted pulses (solitons), and of the 6ps launched pulses. This corresponds to transmission over ~475 soliton periods, which we believe is the longest transmission distance recorded for solitons at this wavelength. The spectrum shown in Fig. 3.c) clearly demonstrates single colour Raman solitons, which were tunable with increasing launched pulse energy out to a maximum wavelength of ~1.12μm. This complements our recent work on SSFS in an active Yb-doped HF where we achieved a much broader tuning range 1.06–1.33 μm16

16. J. H. Price, K. Furusawa, T. M. Monro, L. Lefort, and D. J. Richardson, “A tuneable, femtosecond pulse source operating in the range 1.06–1.33 microns based on an Yb doped holey fiber amplifier,” Conferenceon Lasers and Electro Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001) paper CPD1.

.

Fig. 3. Results obtained using amplified pulses. a)SEM of the holey fiber used for amplified pulse experiments. b) Autocorrelation of 70 pJ pulses; at the input (positively chirped, FWHM 6ps), and after transmission through 60m of fiber (FWHM ~400fs). c) Spectra of input pulses (FWHM 6ps, 100pJ) and wavelength shifted (SSFS) pulses after transmission through 60m of fiber. d) Broadband continuum obtained by launching 20kW peak power pulses (FWHM~350fs, 7.5nJ) into 7m fiber length. The chirp of the input pulses was removed using a diffraction grating compressor.

3. Conclusion

In conclusion, we have directly demonstrated, for the first time to our knowledge, linear dispersion compensation in a holey fiber with anomalous dispersion at wavelengths less than 1.3 μm. At only 1 mW average power (peak power ~200W), the fiber supports both soliton compression, and pulse propagation without temporal broadening, and using pulses with higher peak power, we generated supercontinuum spectra spanning from below 400nm to above 1750nm. All experiments were seeded using a diode-pumped Yb-doped fiber source.

Acknowledgements

J.H.V. Price is supported by the Engineering and Physical Science Research Council (UK). T.M.Monro and D.J.Richardson are supported under the Royal Society University Research Fellowship scheme.

References and links

1.

G. P. Agrawal, Nonlinear Fiber Optics, Academic Press (San Diego, CA), 2nd Edition (1995)

2.

T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, “Holey optical fibers: An efficient modal model,” Journal of Lightwave Technology 17, 1093–1102 (1999). [CrossRef]

3.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technology Letters 12, 807–809 (2000). [CrossRef]

4.

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000). [CrossRef]

5.

T. A. Birks, W. J. Wadsworth, and P. S. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000). [CrossRef]

6.

R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000). [CrossRef] [PubMed]

7.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000). [CrossRef] [PubMed]

8.

J. H. Price, K. Furusawa, T. M. Monro, C. Netti, A. Malinowski, J. J. Baumberg, and D. J. Richardson, “Phase matched UV Generation in a silica holey fiber,” Confenence on Lasers and Electro-optics (CLEO 2002), session CTuB, OSA

9.

J. H. Price, W. Belardi, L. Lefort, T. M. Monro, and D. J. Richardson, “Nonlinear pulse compression, dispersion compensation, and soliton propagation in holey fiber at 1 micron,” in Nonlinear Guided Waves and Their Applications, OSA Technical Digest (optical Society of America, Washington, DC, 2001), pp. 430–432.

10.

W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre, and P. S. J. Russell, “Soliton effects in photonic crystal fibres at 850 nm,” Electron. Lett. 36, 53–55 (2000). [CrossRef]

11.

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “Optical properties of a low-loss polarization-maintaining photonic crystal fiber,” Opt. Express 9, 676–680 (2001). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-676 [CrossRef] [PubMed]

12.

L. Lefort, J. H. Price, D. J. Richardson, G. J. Spuhler, R. Paschotta, U. Keller, A. Fry, and J. Weston, “Practical Low-Noise stretched-pulse Yb3+ -doped fiber laser,” Opt. Lett. 27, 1–3 (2002). [CrossRef]

13.

K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-Fs Pulse Generation from a Stretched-Pulse Mode-Locked All- Fiber Ring Laser,” Opt. Lett. 18, 1080–1082 (1993). [CrossRef] [PubMed]

14.

M. H. Ober, M. Hofer, U. Keller, and T. H. Chiu, “Self-Starting Diode-Pumped Femtosecond Nd Fiber Laser,” Opt. Lett. 18, 1532–1534 (1993). [CrossRef] [PubMed]

15.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000). [CrossRef] [PubMed]

16.

J. H. Price, K. Furusawa, T. M. Monro, L. Lefort, and D. J. Richardson, “A tuneable, femtosecond pulse source operating in the range 1.06–1.33 microns based on an Yb doped holey fiber amplifier,” Conferenceon Lasers and Electro Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001) paper CPD1.

17.

M. E. Fermann, M. L. Stock, D. Harter, T. A. Birks, W. J. Wadsworth, P. S. Russell, and J. Fujimoto, “Wavelength-tunable soliton generation in the 1400–1600 nm region using an Yb fiber laser,” Conference on Advanced Solid State Lasers (ASSL 2001), Technical Digest, Paper TuI2-1.,

18.

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers - art. no. 203901,” Phys. Rev. Lett. 8720, 3901+ (2001).

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons

ToC Category:
Research Papers

History
Original Manuscript: March 20, 2002
Revised Manuscript: April 18, 2002
Published: April 22, 2002

Citation
Jonathan Price, W. Belardi, T. Monro, A. Malinowski, A. Piper, and D. Richardson, "Soliton transmission and supercontinuum generation in holey fiber, using a diode pumped Ytterbium fiber source," Opt. Express 10, 382-387 (2002)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-8-382


Sort:  Journal  |  Reset  

References

  1. G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press, San Diego, CA, 1995) 2nd Edition .
  2. T. M. Monro, D. J. Richardson, N. G. R. Broderick and P. J. Bennett, "Holey optical fibers: An efficient modal model," J. Lightwave Technol. 17, 1093-1102 (1999). [CrossRef]
  3. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth and P. S. Russell, "Anomalous dispersion in photonic crystal fiber," IEEE Photonics Technol. Lett. 12, 807-809 (2000). [CrossRef]
  4. J. K. Ranka, R. S. Windeler and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000). [CrossRef]
  5. T. A. Birks, W. J. Wadsworth and P. S. Russell, "Supercontinuum generation in tapered fibers," Opt. Lett. 25, 1415-1417 (2000). [CrossRef]
  6. R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth and P. S. J. Russell, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000). [CrossRef] [PubMed]
  7. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall and S. T. Cundiff, "Carrierenvelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000). [CrossRef] [PubMed]
  8. J. H. Price, K. Furusawa, T. M. Monro, C. Netti, A. Malinowski, J. J. Baumberg and D. J. Richardson, "Phase matched UV Generation in a silica holey fiber," Confenence on Lasers and Electro-optics (CLEO 2002), session CTuB, OSA
  9. J. H. Price, W. Belardi, L. Lefort, T. M. Monro and D. J. Richardson, "Nonlinear pulse compression, dispersion compensation, and soliton propagation in holey fiber at 1 micron," in Nonlinear Guided Waves and Their Applications, OSA Technical Digest (Optical Society of America, Washington, DC, 2001), pp. 430-432.
  10. W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre and P. S. J. Russell, "Soliton effects in photonic crystal fibres at 850 nm," Electron. Lett. 36, 53-55 (2000). [CrossRef]
  11. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka and M. Fujita, "Optical properties of a low-loss polarization-maintaining photonic crystal fiber," Opt. Express 9, 676-680 (2001). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-676">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-676</a> [CrossRef] [PubMed]
  12. L. Lefort, J. H. Price, D. J. Richardson, G. J. Spuhler, R. Paschotta, U. Keller, A. Fry and J. Weston, "Practical Low-Noise stretched-pulse Yb3+ -doped fiber laser," Opt. Lett. 27, 1-3 (2002). [CrossRef]
  13. K. Tamura, E. P. Ippen, H. A. Haus and L. E. Nelson, "77-Fs Pulse Generation from a Stretched-Pulse Mode-Locked All- Fiber Ring Laser," Opt. Lett. 18, 1080-1082 (1993). [CrossRef] [PubMed]
  14. M. H. Ober, M. Hofer, U. Keller and T. H. Chiu, "Self-Starting Diode-Pumped Femtosecond Nd Fiber Laser," Opt. Lett. 18, 1532-1534 (1993). [CrossRef] [PubMed]
  15. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley and J. D. Harvey, "Self-similar propagation and amplification of parabolic pulses in optical fibers," Phys. Rev. Lett. 84, 6010-6013 (2000). [CrossRef] [PubMed]
  16. J. H. Price, K. Furusawa, T. M. Monro, L. Lefort and D. J. Richardson, "A tuneable, femtosecond pulse source operating in the range 1.06-1.33 microns based on an Yb doped holey fiber amplifier," Conference on Lasers and Electro Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001) paper CPD1.
  17. M. E. Fermann,M. L. Stock, D. Harter, T. A. Birks, W. J. Wadsworth, P. S. Russell and J. Fujimoto, "Wavelength-tunable soliton generation in the 1400-1600 nm region using an Yb fiber laser," Conference on Advanced Solid State Lasers (ASSL 2001), Technical Digest, Paper TuI2-1.
  18. A. V. Husakou and J. Herrmann, "Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers - art. no. 203901," Phys. Rev. Lett. 8720, 3901 (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig.2. Fig. 3.
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited