OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 16 — Aug. 9, 2004
  • pp: 3737–3744
« Show journal navigation

All-fiber photon-pair source for quantum communications: Improved generation of correlated photons

Xiaoying Li, Jun Chen, Paul Voss, Jay Sharping, and Prem Kumar  »View Author Affiliations


Optics Express, Vol. 12, Issue 16, pp. 3737-3744 (2004)
http://dx.doi.org/10.1364/OPEX.12.003737


View Full Text Article

Acrobat PDF (420 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate greatly improved results for the production of correlated photon-pairs using the four-photon scattering process in silica fiber. We achieve a true-coincidence-count to accidental-coincidence-count ratio greater than 10, when the photon-pair production rate is about 0.04/pulse. This represents a four-fold improvement over our previous results. The contribution of spontaneous Raman scattering, the primary cause of uncorrelated photons that degrades the fidelity of this source, is reduced by decreasing the wavelength detuning between the correlated photons and the pump photons and by using polarizers to remove the cross-polarized Raman-scattered photons. Excess Raman scattering could be further suppressed by cooling the silica fiber. Even without cooling the fiber, the achieved 10 to 1 ratio of true-coincidence to accidental-coincidence makes the fiber source of correlated photon-pairs a useful tool for realizing various quantum-communication protocols.

© 2004 Optical Society of America

Fig. 1. Experimental setup: scattered Stokes and anti-Stokes photons emerging from the port labelled “Out” are detected; FPC, fiber polarization controller; PBS, polarization beam splitter; G, gratting; QWP, quarter-wave plate; HWF, half-wave plate; “Signal-In” port is blocked during photon-counting measurement.

Our experimental setup is shown in Fig. 1. Stokes and anti-Stokes photon-pairs at frequencies ωs and ωa , respectively, are produced in a nonlinear-fiber Sagnac interferometer (NFSI). We have previously used this NFSI to generate quantum-correlated twin beams [6

6. J. E. Sharping, M. Fiorentino, and P. Kumar, “Observation of twin-beam-type quantum correlation in optical fiber,” Opt. Lett. 26, 367–369 (2001). [CrossRef]

], correlated photon-pairs [4

4. M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” Photon. Technol. Lett. 27, 491–493 (2002).

], and polarization entanglement [5

5. X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-enangled photon pairs in the 1550nm telecom band,” arXiv: quant-ph/0402191 (2004).

]. The NFSI consists of a fused-silica 50/50 fiber coupler spliced to 300m of dispersion-shifted fiber (DSF) with a zero-dispersion wavelength at λ 0=1535±2nm. The efficiency of FPS in DSF is low because of the relatively low magnitude of the Kerr nonlinearity; only about 0.1 photon-pair is produced by a typical 5-ps-duration pump pulse that contains approximately 10 8 photons. To reliably detect the scattered photon-pairs, a pump to photon-pair rejection ratio in excess of 100 dB is required. We achieve this by first exploiting the mirror-like property of the NFSI [7

7. D. B. Mortimore, “Fiber Loop Reflectors,” J. Lightwave Technol. 6, 1217–1224 (1988). [CrossRef]

], which provides a pump rejection greater than 30 dB, and then sending the transmitted scattered photons along with the leaked pump photons through a free-space double-grating spectral filter (DGSF) that provides a pump-rejection ratio in excess of 75 dB. The filter consists of three identical diffraction gratings (holographic, 600 grooves/mm), G1, G2, G3, whose diffraction efficiencies for the horizontally and vertically polarized light are 90% and 86%, respectively. The doubly-diffracted Stokes and anti-Stokes photons are then re-coupled into fibers. The passbands for the Stokes and anti-Stokes channels are determined by the numerical apertures of the fiber and the geometrical settings of the optical elements composing the spectral filter.

The pump is a 5-ps-duration mode-locked pulse train with a repetition rate of 75.3 MHz, obtained by spatially dispersing the output of an optical parametric oscillator (OPO) (Coherent Inc., model Mira-OPO) with a diffraction grating; its central wavelength can be tuned from 1525 to 1536 nm. To achieve the required power, the pump pulses are then amplified by an erbium-doped fiber amplifier (EDFA). Photons at the Stokes and anti-Stokes wavelengths from the OPO that leak through the spectral-dispersion optics and from the amplified spontaneous emission (ASE) from the EDFA are suppressed by passing the pump through a 1nm-bandwidth tunable filter (Newport, model TBF-1550-1.0). For alignment purposes, weak signal pulses at the Stokes wavelength, which are temporally synchronized with the pump pulses, are injected into the NFSI. During photon counting measurements, however, the input signal is blocked.

Photon counters consisting of InGaAs/InP avalanche photodiodes (APD, Epitaxx, model EPM 239BA) operated in a gated-Geiger mode are used to count the Stokes and anti-Stokes photons [4

4. M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” Photon. Technol. Lett. 27, 491–493 (2002).

]. The 1-ns-wide gate pulses arrive at a rate of 588 kHz, which is 1/128 of the repetition rate of the pump pulses. The quantum efficiency for one detector is 25%, that for the other is 20%. The total detection efficiencies for the Stokes and anti-Stokes photons are about 8% and 6%, respectively, when the efficiencies of the NFSI (82%), 90/10 coupler, double grating filter (45% and 50% in anti-Stokes and Stokes channel, respectively), and other transmission components (about 90%) are included.

Fig. 2. Measured coincidence rates as a function of the number of scattered photons per pump pulse (labelled Single Counts/Pulse) in the anti-Stokes channel for (a) scattered photons co-polarized with the pump and (b) scattered photons cross-polarized with the pump. In both cases λp =1536nm and Ω/2π=1.25THz; the diamonds represent the total-coincidence counts produced by a single pump pulse, the triangles represent the accidental-coincidence counts produced by two adjacent pump pulses, and the line represents the calculated coincidence counts for two independent light sources. The insets show the number of scattered photons per pump pulse detected in the anti-Stokes channel as a function of the number of photons in the pump pulse (hollow circles). A second-order polynomial, Na =s 1 Np +s 2 Np2, is shown to fit the experimental data (dot-dashed line). The contributions of linear scattering, s 1 Np , (dashed line) and quadratic scattering, s 2 Np2, (dotted line) are plotted separately as well. For the inset in (a): s 1=0.00436 and s 2=0.01046; for the inset in (b): s 1=0.00381 and s 2=0.00033.
Fig. 3. Same as in Fig.2, except λp =1525nm. For the inset in (a): s 1=0.00688 and s 2=4.38×10-5; for the inset in (b): s 1=0.005 and s 2=0.

The linear dependance of the scattering rate of the Stokes and anti-Stokes photons on Np , which is proportional to the pump power, indicates that the uncorrelated photons cross-polarized with respect to the pump are caused by spontaneous Raman scattering. This has also been verified experimentally and theoretically in the context of the noise-figure of parametric amplifiers made with fused-silica fiber [8

8. P. L. Voss, R. Tang, and P. Kumar, “Measurement of the photon statistics and the noise figure of a fiber-optic parametric amplifier,” Opt. Lett. 28, 549–551 (2003). [CrossRef] [PubMed]

, 9

9. P. L. Voss and P. Kumar, “Raman-noise-induced noise-figure limit for χ(3) parametric amplifiers,” Opt. Lett. 29, 445–447 (2004). [CrossRef] [PubMed]

, 10

10. P. L. Voss and P. Kumar, “Raman-effect induced noise limits on χ(3) parametric amplifiers and wavelength converters,” to appear in J. Opt. B: Quantum Semiclass. Opt. 6 (2004).

]. To further confirm this point, we tune the central wavelength of the pump to 1525 nm, which is in the normal dispersion region of the DSF, where the phase-matching condition for FPS is not satisfied, and, therefore, no correlated photon-pairs are expected to be produced by the FPS process. Setting the detuning ω/2π of the Stokes and anti-Stokes channels to 1.25 THz, we make the same measurements again. For the photons co-polarized with the pump, linear scattering dominates in this region, though we measure a very small probability of quadratic scattering (less than 150 times that of linear scattering), as shown in the inset of Fig. 3(a). For the coincidence measurements shown in the main body of Fig. 3(a), we find no difference between the total-coincidence rate and the accidental-coincidence rate. Within the error bars of our experimental data, the true coincidence rate between the co-polarized photons in the Stokes and anti-Stokes channels is at most 10-6/pulse. For the photons cross-polarized with the pump, as shown in Fig. 3(b), we also find no difference between the total-coincidence rate and the accidental-coincidence rate, and the number of the scattered photons in the Stokes and anti-Stokes channels depends linearly on the pump power.

Fig. 4. Optical transmission spectrum of the double-grating filter. The pump at 1536 nm is rejected by more than 75 dB compared to the peak transmissions in the Stokes and anti-Stokes channels.

It is well known that in the low-gain low-detuning region, the number of Stokes and anti-Stokes Raman-scattered photons in a given time interval is proportional to n th+1 and n th, respectively, where n th=1/[exp(ω/kT)-1] is the Bose population factor and the resultant Raman-gain coefficient gR (Ω/2π) is very small [11

11. R. H. Stolen and M. A. Bosch, “Low-Frequency and Low-Temperature Raman Scattering in Silica Fibers,” Phys. Rev. Lett. 48, 805–808 (1982). [CrossRef]

, 12

12. M. Hass, “Raman spectra of vitreous silica, germania, and sodium silicate glass,” J. Phys. Chem. Solids 31, 415–422 (1970). [CrossRef]

]. When the detuning Ω/2π is less than 1.5 THz, the co-polarized Raman-gain coefficient in pure-silica fiber follows g R (Ω/2π)=0.02(Ω/2π)+0.04(Ω/2π)3, where the peak of the Raman-gain coefficient is normalized to one [13

13. D. J. Dougherty, F. X. Kaertner, H. A. Haus, and E. P. Ippen, “Measurement of the Raman gain spectrum of optical fibers,” Opt. Lett. 20, 31–33 (1995). [CrossRef] [PubMed]

]. It is then clear that at the frequency detuning we are interested in, the probability of Raman scattering depends on the detuning and the temperature; the lower the detuning and the temperature, the lesser the probability of Raman scattering. Therefore, to improve the fidelity of our photon-pair source, suppression of the Raman scattering is essential. So, to further improve our results we reduce the detuning Ω/2π to 0.5 THz. The passband spectrum of the DGSF is shown in Fig. 4, wherein the isolation of the pump is still greater than 75 dB and the FWHM is about 0.8 nm, which is obtained by adjusting the DGSF. At this reduced detuning, the improved measurement results are shown in Fig. 5. Comparing the results with those in Fig. 2, for the Stokes and anti-Stokes photons co-polarized with the pump, as shown in the inset of Fig. 5(a), the quadratic-scattering coefficient is increased, the linear-scattering coefficient is decreased, and the ratio between the total-coincidence rate and the accidental-coincidence rate is improved. Taking into account the total detection efficiency of 6% in the anti-Stokes channel, at the production rate of about =0.04 photon-pairs/pulse, the ratio between the total coincidences and the accidental coincidences is 13. For the scattered photons cross-polarized with the pump, as shown in Fig. 5(b), the results are similar to those in Fig. 2(b), except that the linear-scattering coefficient is reduced. These improved results imply that when using this fiber source of correlated photons for creating polarization entanglement, a visibility of two-photon interference greater than 85% would be obtained without subtracting the accidental-coincidence counts.

In principle, further reduction of the detuning will further reduce the contribution of the Raman-scattered photons, which are proportional to (n th+1) gR (Ω/2π) on the Stokes side and n th gR (Ω/2π) on the anti-Stokes side. Although it is hard to bring the frequencies of the correlated Stokes and anti-Stokes photons closer to the pump frequency while maintaining the necessary isolation of the pump photons with use of the DGSF presently employed in our setup, such reduction in detuning is possible by employing array-waveguide gratings or similar dense-wavelength-division-multiplexing (DWDM) filters that are used in modern fiber-optic communication systems. Ultimately how small a detuning can be achieved is limited by the spectral bandwidth of the Gaussian-shaped pump pulse. The detuning should be large enough to make sure that the number of pump photons leaking into the Stokes and anti-Stokes channels is negligible. Since the Raman-gain coefficient gR (Ω/2π) may vary from fiber to fiber, a detailed investigation of the Raman gain in the low-detuning regime, which we are presently conducting, is necessary before one can determine the optimal detuning for generating correlated photons with the highest true-coincidence to accidental-coincidence ratio.

Fig. 5. Same as in Fig.2, except Ω/2π=0.5THz. For the inset in (a): s 1=0.00317 and s 2=0.0132; for the inset in (b): s 1=0.00259 and s 2=0.00025. In (a), taking into account the detection efficiency of 6% in the anti-Stokes channel, at a photon-pair production rate of 0.04 (0.067) per pulse the ratio between the total coincidence rate and the accidental coincidence rate is 13:1 (7.5:1).

An additional feature of our fiber-based source of quantum-correlated photon pairs is that it is integrable with the modern fiber-optic technology. The OPO used for obtaining the pump pulses could be replaced by a mode-locked fiber laser, leading to the possibility of repetition rates well over 10 GHz. Moreover, the DGSF could be replaced by fiber-pigtailedDWDMfilters that have lower loss. We also emphasize that the spatial profile of the photon-pair generated is the well characterized, guided, transverse mode of the optical fiber. Thus the main advantage of a fiber source of quantum-correlated photon pairs is the almost perfect coupling efficiency (0.01dB fiber-to-fiber splice loss) that is possible from the source to the transmission fiber in long-distance quantum communication applications. In contrast, fiber coupling of correlated photons from a χ (2)-crystal based source is very delicate; the best result to date is a coupling loss of 2.4 dB [14

14. F. A. Bovino, P. Varisco, A. M. Colla, G. Castagnoli, G. D. Giuseppe, and A. V. Sergienko, “Effective fiber-coupling of entangled photons for quantum communication,” Opt. Commun. 227, 343–348 (2003). [CrossRef]

]. The main disadvantages of the fiber source are the existence of Raman scattered photons and the loss incurred in filtering of the pump, which, in principle, could be made very small by use of fiber Bragg-grating filters. Finally, the coupling efficiency advantage of the fiber source would become even more significant when it is used for realizing complex quantum networks involving multiple entangling operations. Thus, our improved results show that an all-fiber source of entangled photon pairs can be a very promising tool for realizing various quantum information processing protocols.

This research was supported in part by the U.S. Army Research Office under a collaborative MURI grant DAAD190010177.

References and links

1.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportaion,” Nature 390, 575–578 (1997). [CrossRef]

2.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, “Long-distance teleportation of qubits at telecommunication wavelengths,” Nature 421, 509–512 (2003). [CrossRef] [PubMed]

3.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quamtum cryptography,” Rev. Mod. Phys. 74, 145–195 (2001). [CrossRef]

4.

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” Photon. Technol. Lett. 27, 491–493 (2002).

5.

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-enangled photon pairs in the 1550nm telecom band,” arXiv: quant-ph/0402191 (2004).

6.

J. E. Sharping, M. Fiorentino, and P. Kumar, “Observation of twin-beam-type quantum correlation in optical fiber,” Opt. Lett. 26, 367–369 (2001). [CrossRef]

7.

D. B. Mortimore, “Fiber Loop Reflectors,” J. Lightwave Technol. 6, 1217–1224 (1988). [CrossRef]

8.

P. L. Voss, R. Tang, and P. Kumar, “Measurement of the photon statistics and the noise figure of a fiber-optic parametric amplifier,” Opt. Lett. 28, 549–551 (2003). [CrossRef] [PubMed]

9.

P. L. Voss and P. Kumar, “Raman-noise-induced noise-figure limit for χ(3) parametric amplifiers,” Opt. Lett. 29, 445–447 (2004). [CrossRef] [PubMed]

10.

P. L. Voss and P. Kumar, “Raman-effect induced noise limits on χ(3) parametric amplifiers and wavelength converters,” to appear in J. Opt. B: Quantum Semiclass. Opt. 6 (2004).

11.

R. H. Stolen and M. A. Bosch, “Low-Frequency and Low-Temperature Raman Scattering in Silica Fibers,” Phys. Rev. Lett. 48, 805–808 (1982). [CrossRef]

12.

M. Hass, “Raman spectra of vitreous silica, germania, and sodium silicate glass,” J. Phys. Chem. Solids 31, 415–422 (1970). [CrossRef]

13.

D. J. Dougherty, F. X. Kaertner, H. A. Haus, and E. P. Ippen, “Measurement of the Raman gain spectrum of optical fibers,” Opt. Lett. 20, 31–33 (1995). [CrossRef] [PubMed]

14.

F. A. Bovino, P. Varisco, A. M. Colla, G. Castagnoli, G. D. Giuseppe, and A. V. Sergienko, “Effective fiber-coupling of entangled photons for quantum communication,” Opt. Commun. 227, 343–348 (2003). [CrossRef]

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(270.0270) Quantum optics : Quantum optics

ToC Category:
Research Papers

History
Original Manuscript: May 14, 2004
Revised Manuscript: July 21, 2004
Published: August 9, 2004

Citation
Xiaoying Li, Jun Chen, Paul Voss, Jay Sharping, and Prem Kumar, "All-fiber photon-pair source for quantum communications: Improved generation of correlated photons," Opt. Express 12, 3737-3744 (2004)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-16-3737


Sort:  Journal  |  Reset  

References

  1. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, ???Experimental quantum teleportation,??? Nature 390, 575???578 (1997) [CrossRef]
  2. I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, ???Long-distance teleportation of qubits at telecommunication wavelengths,??? Nature 421, 509???512 (2003) [CrossRef] [PubMed]
  3. N. Gisin, G. Ribordy,W. Tittel, and H. Zbinden, ???Quamtum cryptography,??? Rev. Mod. Phys. 74, 145???195 (2001) [CrossRef]
  4. M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, ???All-fiber photon-pair source for quantum communication,??? Photon. Technol. Lett. 27, 491???493 (2002)
  5. X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, ???Optical-fiber source of polarization-enangled photon pairs in the 1550 nm telecom band,??? arXiv: quant-ph/0402191 (2004).
  6. J. E. Sharping, M. Fiorentino, and P. Kumar, ???Observation of twin-beam-type quantum correlation in optical fiber,??? Opt. Lett. 26, 367???369 (2001) [CrossRef]
  7. D. B. Mortimore, ???Fiber Loop Reflectors,??? J. Lightwave Technol. 6, 1217???1224 (1988) [CrossRef]
  8. P. L. Voss, R. Tang, and P. Kumar, ???Measurement of the photon statistics and the noise figure of a fiber-optic parametric amplifier,??? Opt. Lett. 28, 549???551 (2003) [CrossRef] [PubMed]
  9. P. L. Voss and P. Kumar, ???Raman-noise-induced noise-figure limit for ??(3) parametric amplifiers,??? Opt. Lett. 29, 445???447 (2004) [CrossRef] [PubMed]
  10. P. L. Voss and P. Kumar, ???Raman-effect induced noise limits on ??(3) parametric amplifiers and wavelength converters,??? to appear in J. Opt. B: Quantum Semiclass. Opt. 6 (2004)
  11. R. H. Stolen and M. A. Bosch, ???Low-Frequency and Low-Temperature Raman Scattering in Silica Fibers,??? Phys. Rev. Lett. 48, 805???808 (1982) [CrossRef]
  12. M. Hass, ???Raman spectra of vitreous silica, germania, and sodium silicate glass,??? J. Phys. Chem. Solids 31, 415???422 (1970) [CrossRef]
  13. D. J. Dougherty, F. X. Kaertner, H. A. Haus, and E. P. Ippen, ???Measurement of the Raman gain spectrum of optical fibers,??? Opt. Lett. 20, 31???33 (1995) [CrossRef] [PubMed]
  14. F. A. Bovino, P. Varisco, A. M. Colla, G. Castagnoli, G. D. Giuseppe, and A. V. Sergienko, ???Effective fiber coupling of entangled photons for quantum communication,??? Opt. Commun. 227, 343???348 (2003) [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited