OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 17 — Aug. 23, 2004
  • pp: 3911–3920
« Show journal navigation

Electron momentum states and bremsstrahlung radiation from the ultraintense field ionization of atoms

Enam A. Chowdhury, Isaac Ghebregziabher, James MacDonald, and Barry C. Walker  »View Author Affiliations


Optics Express, Vol. 12, Issue 17, pp. 3911-3920 (2004)
http://dx.doi.org/10.1364/OPEX.12.003911


View Full Text Article

Acrobat PDF (1308 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Relativistic continuum dynamics for electrons from the ionization of atoms in an ultraintense (1017 W/cm2 to 1020 W/cm2) laser focus are analyzed using a semi-classical wavelet model. The results quantify the energy and angle resolved photoionization yields due to the developing relativistic dynamics in ultraintense fields. Using the final state momentum, the bremsstrahlung radiation yield is calculated and shows a linear relationship between the radiation cutoff and the laser intensity. At 1020 W/cm2 photons with energies out to 10MeV should be observed. The results are quantitatively comparable to the observed angle resolved photoelectron spectra of current ultraintense laser-atom experiments. The results show the azimuthal angular distributions becoming more isotropic with increasing intensity.

© 2004 Optical Society of America

1. Introduction

Ultraintense light matter interactions ushered in a paradigm shift for high field physics through the break down of the approximation v/c=0, the introduction of magnetic field effects, the suppression of non-sequential ionization, and other phenomena. Novel physical effects like the photo-generation of particles with thousand [1

1. C. I. Moore, A. Ting, S. J. McNaught, J. Qiu, H. R. Burris, and P. Sprangle, “A Laser-Accelerator Injector Based on Laser Ionization and Ponderomotive Acceleration of Electrons,” Phys. Rev. Lett. 82, 1688 (1999). [CrossRef]

] to million [2

2. T. E. Cowan, A. W. Hunt, T. W. Phillips, S. C. Wilks, M. D. Perry, C. Brown, W. Fountain, S. Hatchett, J. Johnson, M. H. Key, T. Parnell, D. M. Pennington, R. A. Snavely, and Y. Takahashi, “Photonuclear Fission from High Energy Electrons from Ultraintense Laser-Solid Interactions,” Phys. Rev. Lett. 84, 903 (2000). [CrossRef] [PubMed]

] electron volt energies expanded our knowledge into previously uncharted territory, and led to questions about the excitation and radiation mechanisms in ultraintense fields. A comprehensive knowledge of ultraintense field processes, such as Larmor or bremsstrahlung radiation [3

3. P. A. Norreys, M. Santala, E. Clark, M. Zepf, I. Watts, F. N. Beg, K. Krushelnick, and M. Tatarakis, et al., “Observation of a highly directional γ-ray beam from ultrashort, ultraintense laser pulse interactions with solids,” Physics of Plasmas 6, 2150 (1999). [CrossRef]

], and a more complete physical picture of the ultraintense regime requires an understanding of atomic ionization and continuum electronic dynamics. Atomic studies provide an opportunity to test models of ultraintense field interactions without collective plasma effects. The results may also be applied, for example, as an ultraintense field calibration standard and could play a role in understanding the atomic processes within laser plasmas.

The ultraintense barrier tunneling ionization process for an atom has been studied both experimentally and theoretically [4

4. V. P. Krainov, “High-energy electron spectra of atoms undergoing direct tunnelling ionization by linearly polarized laser radiation,” J. Phys. B 36, L169 (2003). [CrossRef]

, 5

5. V. P. Krainov and A. V. Sofronov, “High-energy electron-energy spectra of atoms undergoing tunneling and barrier-suppression ionization by superintense linearly polarized laser radiation,” Phys. Rev. A 69, 015401 (2004). [CrossRef]

, 6

6. E. A. Chowdhury, C. P. J. Barty, and B. C. Walker, “‘Nonrelativistic’ ionization of the L-shell states in argon by a ‘relativistic’ 1019 W/cm2 laser field,” Phys. Rev. A 63, 042712 (2001). [CrossRef]

]. It is the relativistic continuum dynamics of the electron subsequent to tunneling that will be discussed in this paper. Classical trajectory and Monte-Carlo techniques have been used to model ultraintense field electron dynamics [7

7. Richard Taieb, Valerie Veniard, and Alfred Maquet, “Photoelectron Spectra from Multiple Ionization of Atoms in Ultra-Intense Laser Pulses,” Phys. Rev. Lett. 87, 053002 (2001). [CrossRef] [PubMed]

]. Some salient points, such as the electron energy gain [8

8. A. Maltsev and T. Ditmire, “Above Threshold Ionization in Tightly Focused, Strongly Relativistic Laser Fields,” Phys. Rev. Lett. 90, 053002 (2003). [CrossRef] [PubMed]

] when electrons are introduced at the right phase of the field [9

9. Yousef I. Salamin and Christoph H. Keitel, “Acceleration by a Tightly Focused Laser Beam,” Phys. Rev. Lett. 88, 095005 (2002). [CrossRef] [PubMed]

] and non-planar dynamics in a real laser focus [10

10. Brice Quesnel and Patrick Mora, “Theory and simulation of the interaction of ultraintense laser pulses with electrons in vacuum,” Phys. Rev. E 58, 3719 (1998). [CrossRef]

], have been established by these methods. Fully quantum calculations using the Dirac or Klein-Gordon equation are difficult but have been used to gain insight into electron-ion scattering [11

11. Guido R. Mocken and Christoph H. Keitel, “Quantum Signatures in Laser-Driven Relativistic Multiple Scattering,” Phys. Rev. Lett. 91, 173202 (2003). [CrossRef] [PubMed]

] and properties of the continuum wave functions [12

12. Q. Su, B. A. Smetanko, and R. Grobe, “Relativistic suppression of wave packet spreading,” Optics Express 2, 277 (1998). [CrossRef] [PubMed]

]. Since the ionization process is quantum mechanical, incorporation of the quantum nature into the model is essential for an accurate representation of many phenomena. Keeping this in mind, we use a semi-classical, continuum wavelet model that incorporates the wave function probability from tunneling ionization. In this approach a classical relativistic trajectory is generated for each time interval where tunneling occurs. Every trajectory has an ionization probability associated with it, and is called a wavelet. When all wavelets are projected onto position or momentum spaces they create, albeit semi-classically, a dynamical view of the atomic response of a bound electron to the ultraintense field during the whole laser pulse. The wavelet approach allows us to model the spatially distributed electron probability in the continuum, calculate a probability distribution of electron continuum momentum states, and capture a clear change in the continuum dynamics from 1017W/cm2 (Fig. 1) to 1019W/cm2 (Fig. 2).

2. Continuum momentum states

For intensities below 1016 W/cm2 or weakly focused geometries, the paraxial approximation is valid and simplifications occur in the classical equations of motion. In the paraxial limit, |Ex (r,t)|=c|By (r,t)|, with all other components of E and B set to zero. It is well known that when the initial momentum is zero (consistent with ionization in a strong field,) the relativistic equations of motion

dpxdt=q(ExpzγmBy);dpydt=0;dpzdt=qpxγmBy
(1)
d(energy)dt=qpxγmEx
(2)

(m is the rest mass of a particle with charge q and relativistic factor γ) confine the dynamics to the propagation-polarization (x-z) plane. In this case, a relativistically invariant relationship exists, i.e. pz=px 2/2mc or equivalently tanθ=(2/(γ-1))1/2 where θ is the polar angle from propagation (z) axis [13

13. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, 4th edition (Oxford, New York, 1979)

]. Corrections to the paraxial approximation change this relationship significantly. Even though a laser may be polarized along the x-axis at the focus, significant y and z components to the field can exist away from the center of the focus. For example, at the exp(-1) beam waist (w0 ) and one Raleigh length (zR=kw02/2) away from the center of an f#/2.5 focus Ey/E=0.005 and Ez/E=0.14 in the |x|=|y| plane and Ez/E=0.29 in the x-z plane. It is the more complicated interaction region and dynamics for atoms in ultraintense fields that requires quantitative, angle resolved information to compare to experimental photoelectron yields.

The ultraintense continuum model we develop here is subdivided as follows: tunneling ionization, semi-classical continuum dynamics, and extraction of the momentum distribution based on the probability. The sample in the laser focus was varied from 1 atom to a random distribution comparable to a density of 1015 atoms/cm3. With regard to ionization, the excitation of the bound atomic system is treated in the adiabatic, DC limit since the photon energy is less than 1% of the bound state energy. Ultraintense [6

6. E. A. Chowdhury, C. P. J. Barty, and B. C. Walker, “‘Nonrelativistic’ ionization of the L-shell states in argon by a ‘relativistic’ 1019 W/cm2 laser field,” Phys. Rev. A 63, 042712 (2001). [CrossRef]

] and intense [14

14. B. Walker, B. Sheehy, L. F. DiMauro, P. Agostini, K. J. Schafer, and K. C. Kulander, “Precision Measurement of Strong Field Double Ionization of Helium,” Phys. Rev. Lett. 73, 1227 (1994). [CrossRef] [PubMed]

] field experiments show the ionization yields from the 1015 W/cm2 to 1019 W/cm2 intensity range agree with the ionization yields calculated using a WKB tunneling ionization model. The magnetic field is approximated to have a negligible impact on tunneling ionization since the Zeeman energy and v/c for the electron within 0.5nm of the nucleus are both small. Once in the continuum, the ionization is modeled with the wavelets using a time step of order 10-18 s and probability assigned by the previously described tunneling ionization. Thus, the ionization wavelet may be thought of as the quantum mechanical electron flux from the ion in the quasi-static limit. In fact, the interaction is not static. At the peak of the electron momentum an error of 1% is introduced by using a constant momentum across the wavelet; i.e. the change in the deBroglie wavelength across each wavelet is in fact Δλ/λ≅0.01 though it is approximated as zero.

Fig. 1. (342 KB) Movie of the ionization wave function probability from one Ne+7 ion at the center of a f#/1.5, 2 1017 W/cm2 peak focus.

The interaction of a single ion with an 800nm, 11fs FWHM laser pulse generates approximately 103 wavelets whose dynamics are solved numerically [15

15. R. W. Brankin, I. Gladwell, and L.F. Shampine, Numerical Algorithms Group Ltd, (Wilkinson House, Jordan Hill Road, Oxford OX2 8DR, UK)

]. The calculations are propagated for fifteen cycles or until the electron is well out of the focal region. In the focus, the Coulomb field and radiation damping are neglected. Two movies of the continuum dynamics from an atom in an intense field (FWHM=11fs, 800nm, f/# 1.5) are shown in Fig. 1. For each figure, the electron probability from an atom at the origin (center of the focus) is projected on the x-z plane and followed in time. The eight level natural logarithmic white-yellow-red-black scheme for the electron probability is normalized to the peak and shows one exp(-1) order of magnitude per change in tone. For reference, the movie includes an adjacent frame for the electric field in the focus at the z axis, which accounts for the attenuation due to diffraction of the light beyond the focus. The ionization of Ne+7 to form Ne+8 at 2 1017 W/cm2 is shown in Fig. 1 from -7.7fs before to 10.6fs after the peak in the pulse. The movie shows the “bursts” of ionization near the peaks of the optical field and the oscillation of the electron driven by the laser field responsible for high field re-scattering [16

16. L.F. DiMauro and P. Agostini, “Ionization Dynamics in Strong Laser Fields,” in Advances in Atomic, Molecular, and Optical Physics, B. Bederson and H. Walther, (Academic Press, San Diego, Calif., 1995), pp. 79–118. [CrossRef]

], non-sequential ionization [17

17. V.R. Bhardwaj, S.A. Aseyev, M. Mehendale, G.L. Yudin, D.M. Villeneuve, D.M. Rayner, M.Y. Ivanov, and P.B. Corkum, “Few Cycle Dynamics of Multiphoton Double Ionization,” Phys. Rev. Lett. 86, 3522–3525 (2001). [CrossRef] [PubMed]

] and high harmonic generation [18

18. E.A. Gibson, A. Paul, N. Wagner, R. Tobey, D. Gaudiosi, S. Backus, I.P. Christov, A. Aquila, E.M. Gullikson, D.T. Attwood, M.M. Murnane, and H. C. Kapteyn, “Coherent Soft X-ray Generation in the Water Window with Quasi-Phase Matching,” Science 302, 95–98 (2003). [CrossRef] [PubMed]

]. One can see in Fig. 1 the electron is relativistic as shown by drift along z. However, as the extent of the probability distribution is near the center of the focus the continuum may be approximately described by pz=px2/(2mc) dynamics with a spatially uniform electric and magnetic field. For the electron wavelets in Fig. 1, k·r is less than 1 and γ is less than 1.1. With these conditions the electron will oscillate in phase with the laser field and the parabolic relationship between px and pz will result in a similar relationship between the x and z components of the drift velocity causing the wave fronts to become parabolic.

Fig. 2. (378 KB) Movie of the ionization wave function probability from one Ar+15 ion at the center of a f#/1.5, 1 1019 W/cm2 peak focus. The x-axis extends to the exp(-2) beam radius and the z-axis to one Raleigh length.

The ionization of Ar+15 to form Ar+16 at 1 1019W/cm2 is shown in Fig. 2. from -6.5fs before to 8fs after the peak in the pulse. At 1019W/cm2 the dynamics are clearly different with the electron probability from each tunneling ionization “burst” distributed over a 10-6m length scale, which is comparable to the focus and wavelength dimension. There are several reasons for this drastic change. Even before an ionization wave front has experienced two cycles of field, it has traveled half a Raleigh length in the z direction. The large k·r shift allows the leading edge (ionization at phases before the optical peak of the pulse) of the electron wave front to “catch the wave” and “surf” out of the focus on the face of the field while later portions of the electron probability are too late and ride up on the wave and continue to oscillate, visibly lagging behind the field phase within a few femtoseconds after entering the continuum. Calculations with plane waves show the dynamics of the first cycles are not a strong function of the focus parameters; whether using a plane wave or f#/1.5 focus, the first one to two cycles of the field show wave fronts very similar to those in Fig. 2. Although near the center of the f#/1.5 focus the field is nearly paraxial, the large electron velocity at 1019 W/cm2 (γ≅2) destroys the parabolic relationship between the x and z components of the drift velocities. As shown in Fig. 2, a significant amount of electron probability approaches the Raleigh length while the field is still large, a scenario made possible by large k·r, the motion is dominated by non-paraxial fields, which are very different from the paraxial fields in phase and amplitude.

Fig. 3. Final state momentum plots for the ionization of atoms in a f#/2.5 focus; (a) and (b) are for Ne+7 at 2 1017 W/cm2, (c) and (d) are for Ar+15 at 1 1019 W/cm2, (e) and (f) are for Na10+ at 1 1020 W/cm2.

The final momentum distributions for atoms in a focus with a peak intensity of 2 1017W/cm2, 1 1019W/cm2, and 1 1020W/cm2 are shown in Fig. 3. The normalized probability is shown in an eight color logarithmic scale with each change in tone representing 10-0.5 in scale. Figures 3(a, b) is for the ionization of Ne+7, Figs. 3(c, d) is for Ar+15, and Fig. 3(e, f) is for the ionization of Na+10. In Figs. 3(b, d, f) the relativistic paraxial solution is also shown. Several features in the px-py momentum distribution can be seen in Figs. 3(a, c, e). The non-zero py results primarily from a nonzero Bz with some contribution from the nonzero Ez, Ey whose absolute magnitudes become significant enough in high fields to alter the final state momentum [8

8. A. Maltsev and T. Ditmire, “Above Threshold Ionization in Tightly Focused, Strongly Relativistic Laser Fields,” Phys. Rev. Lett. 90, 053002 (2003). [CrossRef] [PubMed]

]. As the intensity increases from Figs. 3(a–c), the electron velocity along x increases. The larger vx combined with Bz increases the py momentum as one moves from 1017 W/cm2 to 1020 W/cm2 until in Fig 3c the distribution almost appears to be elliptical along py rather than px as shown in Fig. 3(a). All the px-py plots exhibit left-right (x) and up-down (y) reflection symmetries as expected from a laser pulse with several cycles. In the ionization of atoms by ultraintense fields, the final state momentum is affected by two compounding occurrences: an ionization mechanism that limits the “birth” of the electron probability to near the peak of the field and an electron displacement magnitude - across the laser focus - that increases the interaction with non-paraxial fields. The bulk of the electron probability, which does not surf out near the center of the focus traverses back and forth within the focus for a few cycles, gaining significant py momentum due to the strong Bz fields at the edge of the focus and deviating significantly from the paraxial solution (see Figs. 3(a,c,e).) Ionization from atoms placed away from the center of the focus produce low probability momentum states that also deviate from the paraxial solution. The result can be seen most clearly in Fig. 3(d), and Fig. 3(f) by the increase in the range of momentum beyond the paraxial solution.

Fig. 4. The electron energy spectrum (same conditions as Fig. 3) from 2 1017 W/cm2 (a,d), 1 1019 W/cm2 (b,e), and 1 1020 W/cm2 (c,f). Before normalization the peak values are 5 10-4, 5 10-6, 1 10-6 electron/(ion-eV-steradian) for the three intensities, respectively. In (a), (b), and (c) the energy spectrum is as function of θ from the z-axis at ϕ=0, i.e. in the x-z field polarization plane. In (d), (e), and (f) the energy spectrum is as function of θ from the z-axis at ϕ=90, i.e. in the y-z plane.

Table 1. Energy and angle regions of interest for low and high energy azimuthal dependence.

table-icon
View This Table

In the case of low energies for all three intensities, the emission is nearly isotropic. However, in the high energy limit, for 2 1017W/cm2, 1 1019W/cm2, and 1 1020W/cm2 the full-width-half-maximum azimuthal emission angle for the results in Fig. 5, i.e., the full ϕ angle about ϕ=0 degree (x-axis), is 18 degree, 22 degree, and 112 degree, respectively. For the highest electron energies, the angular spread in the emission increases rather than decreases. This effect is due to the large vx/c, and consequent vx ×Bz force, for ultraintense intensities. The decreased directionality at higher intensities must be considered when proposing electrons from an ultraintense intensity focus as an injector for particle accelerators.

Fig, 5. The azimuthal angle resolved photoelectron distributions for low (orange-dash), and high energy (red-solid) photoelectrons at 2 1017 W/cm2 (a), 1 1019 W/cm2 (b), and 1 1020 W/cm2 (c).

Electron dynamics both in and out of the focus are important for analyzing Larmor radiation, plasma effects, and bremsstrahlung radiation. It is well known in the non-relativistic case that electrons have a speed from 0 to 2qE/mω inside the focus while exiting electrons have a speed range from 0 to qE/mω. With increasing intensity the electron may remain in phase with the field due to pz (or more generally k·r) and the exiting electron speed may approach the speed of the electron inside the focus. Consistent with this observation across the intensity range studied here, the ratio of the peak final electron kinetic energy to the peak kinetic energy in the focus increases from 0.25 for the non-relativistic case to 0.26, 0.35, and 0.81 for 2 1017 W/cm2, 1019 W/cm2, and 1020 W/cm2, respectively. The electron energies produced by the interaction of ultraintense fields with atoms have an upper limit of 12 MeV at 1020 W/cm2 (Fig. 4(c).) Consistent with lower intensity studies, the highest energy final states correspond to ionization from phases off the peak of the field. This maximum energy can be increased by using a weaker focus [8

8. A. Maltsev and T. Ditmire, “Above Threshold Ionization in Tightly Focused, Strongly Relativistic Laser Fields,” Phys. Rev. Lett. 90, 053002 (2003). [CrossRef] [PubMed]

] thereby suppressing the role of the non-paraxial components and the Guoy phase shift (tan-1(z/zR)) mismatch between the electron and the laser field.

3. Bremsstrahlung radiation

When electrons with energies less than 100MeV traverse through a low Z material (e.g., nitrogen) the primary interaction is the collision excitation and ionization of the material [19

19. J. D. Jackson, Classical Electrodynamics, 3rd edition (Wiley, New York, 1990)

] [20

20. Bruno Rossi, High Energy Particles (Prentice-Hall, New York, 1952)

] with the accompanying loss of the electron’s kinetic energy over thousands of such processes. Even for high Z materials, such as lead, the energy below which collision losses exceed radiation losses is 10MeV. Therefore, based on the energy spectra in Fig. 4, one should expect the electron products from ultraintense field ionization of atoms will predominantly lose energy by collision interactions. The products from the collision interaction include, for example, e-2e, Auger processes and photons from the decay of the excited states. The magnitude, angular distributions, and energies of the secondary electron and decay products for the collision excited material depend upon the cross sections that are unique for every atom or molecule. The details of these secondary products are not described here. In this section, we calculate the bremsstrahlung radiation spectrum from the photoelectrons emitted from the focus as they collide with a nitrogen target. Naturally, electron energy loss due to the bremsstrahlung radiation and inelastic collisions are included. The loss due to inelastic collisions is treated by neglecting spin and exchange effects and the effective collision excitation energy for nitrogen is taken to be 80.5eV. This approximation introduces an error of less than 6% in the collision cross section. The pair-production phenomenon, which can occur when a photon interacts with a nucleus, is not considered here due to the low yield of photons with energy greater than 1 MeV. We use the Born approximation since v/c> Z/137 is satisfied for our conditions and the electron is deflected into small angles after scattering [21

21. H. Bethe and W. Heitler, “On the Stopping of Fast Particles and on the Creation of Positive Electrons,” Proc. R. Soc. London, Ser. A 146, 83 (1934). [CrossRef]

]. In general, the bremsstrahlung radiation is within an angle θ=mc2/E0 of the initial direction of the electron with energy E0. For low energy electrons (E0≅mc2) the angular distribution of the radiation should become isotropic.

The bremsstrahlung scattering process is modeled with an energy dependent screening of the nuclear charge by the bound electrons. In bremsstrahlung radiation, an electron (p0, E0) incident upon an atom is scattered into a new state (p, E) and emits a photon (k) to conserve energy and momentum. Following Bethe and Heitler [21

21. H. Bethe and W. Heitler, “On the Stopping of Fast Particles and on the Creation of Positive Electrons,” Proc. R. Soc. London, Ser. A 146, 83 (1934). [CrossRef]

] for the unscreened potential, the cross-section for emission of a photon of wave number in the range k to k+dk is

dΦ=αZ2(e2mc2)2pp0dkk{432E0Ep2+p02p2p02+μ2(ε0Ep03+εE0p3εε0pp0)+[83E0Ep0p+k2p03p3(E02E2+p02p2)]L+μ2k2pp0[E0E+p02p03ε0E0E+p2p3ε+2kE0Ep2p02]L}
(3)

where,

α=e2cμ=mec2ε=logE+pEp=2logE+pμε0=logE0+P0E0P0=2logE0+pμ

and

L=logp02+p0pE0kp02p0pE0k=2logE0E+p0pμ2μk
(4)

Here p is the momentum times c and k=E0-E. With screening, the cross section is given by,

dΦ=αZ2(e2μ)2dkk1E02[(E02+E2)(ϕ1(χ)43logZ)23E0E(ϕ2(χ)43logZ)]
(5)

where ϕ 1 and ϕ 2 are functions of χ=100µk/(E0 E Z1/3 ), which is obtained from the atomic screening length. In the case where χ<1.5, i.e., large energy collisions with large impact parameters and lower energy radiation, screening effects are included as the interaction involves the outer ranges of the atomic potential. In the case of higher frequency radiation relative to the electron energy, the interaction is short range and the unscreened potential is used. The equations for the radiation spectrum and the fractional energy loss of the electron as it propagates are solved numerically using a finite difference method. The bremsstrahlung radiation energy spectrum is then integrated over all time, i.e., until the electron energy is less than 500eV. The calculation evolves the electron energy spectrum; the electron energy spectrum for the ionization leaving the focus is used as the initial condition. The bremsstrahlung radiation spectrum, normalized to give the total energy radiated by a single electron, i.e. one ionization event averaged over the electron spectrum, is shown in Fig. 6. The spectrum is relatively flat out to the cutoff energy, which scales linearly with intensity. Small features in the yield, most prominent in the 1019 W/cm2 case, are the result of features in the energy distribution of the photoelectrons.

Fig. 6. The total energy radiated by bremsstrahlung normalized to a single ionization event at the intensities of 2 1017 W/cm2 (dotted), 1 1019 W/cm2 (dashed yellow), and 1 1020 W/cm2 (red).

Since the high energy cutoff scales linearly with intensity and is relatively easy to measure with the highest energy photons directed forward with the electrons, it may be possible to use the bremsstrahlung radiation as a simple calibration of the focus for ultraintense lasers. Such measurements would avoid the problems of space charge and Coulomb explosion, which plague traditional ion charge state calibrations of peak laser intensities beyond 1017W/cm2.

In conclusion, we have presented the electron momentum, energy, and bremsstrahlung radiation expected from the ionization of atoms by ultraintense fields in a focused geometry. The results quantify, within the approximations of the model, the evolution of the electron dynamics from the edge of the relativistic intensity range at 1017W/cm2 up to 1020W/cm2 where the interpretation of the ionization dynamics, final energies, and radiation processes all depend upon a relativistic perspective. Several notable findings include: the increasing azimuthal isotropy of the high energy photoelectron spectra with higher intensity, the change in the peak final/peak focus kinetic energy from ¼ as the intensity exceeds 1017 W/cm2, and the bremsstrahlung spectra with a high energy cutoff scaling linearly with intensity over the 1017 W/cm2 to 1020 W/cm2 range.

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No. 0140331.

References and links

1.

C. I. Moore, A. Ting, S. J. McNaught, J. Qiu, H. R. Burris, and P. Sprangle, “A Laser-Accelerator Injector Based on Laser Ionization and Ponderomotive Acceleration of Electrons,” Phys. Rev. Lett. 82, 1688 (1999). [CrossRef]

2.

T. E. Cowan, A. W. Hunt, T. W. Phillips, S. C. Wilks, M. D. Perry, C. Brown, W. Fountain, S. Hatchett, J. Johnson, M. H. Key, T. Parnell, D. M. Pennington, R. A. Snavely, and Y. Takahashi, “Photonuclear Fission from High Energy Electrons from Ultraintense Laser-Solid Interactions,” Phys. Rev. Lett. 84, 903 (2000). [CrossRef] [PubMed]

3.

P. A. Norreys, M. Santala, E. Clark, M. Zepf, I. Watts, F. N. Beg, K. Krushelnick, and M. Tatarakis, et al., “Observation of a highly directional γ-ray beam from ultrashort, ultraintense laser pulse interactions with solids,” Physics of Plasmas 6, 2150 (1999). [CrossRef]

4.

V. P. Krainov, “High-energy electron spectra of atoms undergoing direct tunnelling ionization by linearly polarized laser radiation,” J. Phys. B 36, L169 (2003). [CrossRef]

5.

V. P. Krainov and A. V. Sofronov, “High-energy electron-energy spectra of atoms undergoing tunneling and barrier-suppression ionization by superintense linearly polarized laser radiation,” Phys. Rev. A 69, 015401 (2004). [CrossRef]

6.

E. A. Chowdhury, C. P. J. Barty, and B. C. Walker, “‘Nonrelativistic’ ionization of the L-shell states in argon by a ‘relativistic’ 1019 W/cm2 laser field,” Phys. Rev. A 63, 042712 (2001). [CrossRef]

7.

Richard Taieb, Valerie Veniard, and Alfred Maquet, “Photoelectron Spectra from Multiple Ionization of Atoms in Ultra-Intense Laser Pulses,” Phys. Rev. Lett. 87, 053002 (2001). [CrossRef] [PubMed]

8.

A. Maltsev and T. Ditmire, “Above Threshold Ionization in Tightly Focused, Strongly Relativistic Laser Fields,” Phys. Rev. Lett. 90, 053002 (2003). [CrossRef] [PubMed]

9.

Yousef I. Salamin and Christoph H. Keitel, “Acceleration by a Tightly Focused Laser Beam,” Phys. Rev. Lett. 88, 095005 (2002). [CrossRef] [PubMed]

10.

Brice Quesnel and Patrick Mora, “Theory and simulation of the interaction of ultraintense laser pulses with electrons in vacuum,” Phys. Rev. E 58, 3719 (1998). [CrossRef]

11.

Guido R. Mocken and Christoph H. Keitel, “Quantum Signatures in Laser-Driven Relativistic Multiple Scattering,” Phys. Rev. Lett. 91, 173202 (2003). [CrossRef] [PubMed]

12.

Q. Su, B. A. Smetanko, and R. Grobe, “Relativistic suppression of wave packet spreading,” Optics Express 2, 277 (1998). [CrossRef] [PubMed]

13.

L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, 4th edition (Oxford, New York, 1979)

14.

B. Walker, B. Sheehy, L. F. DiMauro, P. Agostini, K. J. Schafer, and K. C. Kulander, “Precision Measurement of Strong Field Double Ionization of Helium,” Phys. Rev. Lett. 73, 1227 (1994). [CrossRef] [PubMed]

15.

R. W. Brankin, I. Gladwell, and L.F. Shampine, Numerical Algorithms Group Ltd, (Wilkinson House, Jordan Hill Road, Oxford OX2 8DR, UK)

16.

L.F. DiMauro and P. Agostini, “Ionization Dynamics in Strong Laser Fields,” in Advances in Atomic, Molecular, and Optical Physics, B. Bederson and H. Walther, (Academic Press, San Diego, Calif., 1995), pp. 79–118. [CrossRef]

17.

V.R. Bhardwaj, S.A. Aseyev, M. Mehendale, G.L. Yudin, D.M. Villeneuve, D.M. Rayner, M.Y. Ivanov, and P.B. Corkum, “Few Cycle Dynamics of Multiphoton Double Ionization,” Phys. Rev. Lett. 86, 3522–3525 (2001). [CrossRef] [PubMed]

18.

E.A. Gibson, A. Paul, N. Wagner, R. Tobey, D. Gaudiosi, S. Backus, I.P. Christov, A. Aquila, E.M. Gullikson, D.T. Attwood, M.M. Murnane, and H. C. Kapteyn, “Coherent Soft X-ray Generation in the Water Window with Quasi-Phase Matching,” Science 302, 95–98 (2003). [CrossRef] [PubMed]

19.

J. D. Jackson, Classical Electrodynamics, 3rd edition (Wiley, New York, 1990)

20.

Bruno Rossi, High Energy Particles (Prentice-Hall, New York, 1952)

21.

H. Bethe and W. Heitler, “On the Stopping of Fast Particles and on the Creation of Positive Electrons,” Proc. R. Soc. London, Ser. A 146, 83 (1934). [CrossRef]

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(020.4180) Atomic and molecular physics : Multiphoton processes

ToC Category:
Research Papers

History
Original Manuscript: July 6, 2004
Revised Manuscript: August 4, 2004
Published: August 23, 2004

Citation
Enam Chowdhury, Isaac Ghebregziabher, James MacDonald, and Barry Walker, "Electron momentum states and bremsstrahlung radiation from the ultraintense field ionization of atoms," Opt. Express 12, 3911-3920 (2004)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-17-3911


Sort:  Journal  |  Reset  

References

  1. C. I. Moore, A. Ting, S. J. McNaught, J. Qiu, H. R. Burris, and P. Sprangle, �??A Laser-Accelerator Injector Based on Laser Ionization and Ponderomotive Acceleration of Electrons,�?? Phys. Rev. Lett. 82, 1688 (1999). [CrossRef]
  2. T. E. Cowan, A. W. Hunt, T. W. Phillips, S. C. Wilks, M. D. Perry, C. Brown, W. Fountain, S. Hatchett, J. Johnson, M. H. Key, T. Parnell, D. M. Pennington, R. A. Snavely, and Y. Takahashi, �??Photonuclear Fission from High Energy Electrons from Ultraintense Laser-Solid Interactions,�?? Phys. Rev. Lett. 84, 903 (2000). [CrossRef] [PubMed]
  3. P. A. Norreys, M. Santala, E. Clark, M. Zepf, I. Watts, F. N. Beg, K. Krushelnick, M. Tatarakis, et al., �??Observation of a highly directional γ-ray beam from ultrashort, ultraintense laser pulse interactions with solids,�?? Physics of Plasmas 6, 2150 (1999). [CrossRef]
  4. V. P. Krainov, "High-energy electron spectra of atoms undergoing direct tunnelling ionization by linearly polarized laser radiation," J. Phys. B 36, L169 (2003). [CrossRef]
  5. V. P. Krainov, A. V. Sofronov, "High-energy electron-energy spectra of atoms undergoing tunneling and barrier-suppression ionization by superintense linearly polarized laser radiation," Phys. Rev. A 69, 015401 (2004). [CrossRef]
  6. E. A. Chowdhury, C. P. J. Barty, and B. C. Walker, �??�??Nonrelativistic�?? ionization of the L-shell states in argon by a �??relativistic�?? 1019 W/cm2 laser field,�?? Phys. Rev. A 63, 042712 (2001). [CrossRef]
  7. Richard Taieb, Valerie Veniard, Alfred Maquet, �??Photoelectron Spectra from Multiple Ionization of Atoms in Ultra-Intense Laser Pulses,�?? Phys. Rev. Lett. 87, 053002 (2001). [CrossRef] [PubMed]
  8. A. Maltsev and T. Ditmire, �??Above Threshold Ionization in Tightly Focused, Strongly Relativistic Laser Fields,�?? Phys. Rev. Lett. 90, 053002 (2003). [CrossRef] [PubMed]
  9. Yousef I. Salamin and Christoph H. Keitel, �??Acceleration by a Tightly Focused Laser Beam,�?? Phys. Rev. Lett. 88, 095005 (2002). [CrossRef] [PubMed]
  10. Brice Quesnel and Patrick Mora, �??Theory and simulation of the interaction of ultraintense laser pulses with electrons in vacuum,�?? Phys. Rev. E 58, 3719 (1998). [CrossRef]
  11. Guido R. Mocken and Christoph H. Keitel, �??Quantum Signatures in Laser-Driven Relativistic Multiple Scattering,�?? Phys. Rev. Lett. 91, 173202 (2003). [CrossRef] [PubMed]
  12. Q. Su, B. A. Smetanko, and R. Grobe, �??Relativistic suppression of wave packet spreading,�?? Optics Express 2, 277 (1998). [CrossRef] [PubMed]
  13. L. D. Landau, E. M. Lifshitz, The Classical Theory of Fields, 4th edition (Oxford, New York, 1979)
  14. B. Walker, B. Sheehy, L. F. DiMauro, P. Agostini, K. J. Schafer, and K. C. Kulander, �??Precision Measurement of Strong Field Double Ionization of Helium,�?? Phys. Rev. Lett. 73, 1227 (1994). [CrossRef] [PubMed]
  15. R. W. Brankin, I. Gladwell, and L.F. Shampine, Numerical Algorithms Group Ltd, (Wilkinson House, Jordan Hill Road, Oxford OX2 8DR, UK)
  16. L.F. DiMauro and P. Agostini, �??Ionization Dynamics in Strong Laser Fields,�?? in Advances in Atomic, Molecular, and Optical Physics, B. Bederson and H. Walther, (Academic Press, San Diego, Calif., 1995), pp. 79-118. [CrossRef]
  17. V.R. Bhardwaj, S.A. Aseyev, M. Mehendale, G.L. Yudin, D.M. Villeneuve, D.M. Rayner, M.Y. Ivanov, P.B. Corkum, �??Few Cycle Dynamics of Multiphoton Double Ionization,�?? Phys. Rev. Lett. 86, 3522-3525 (2001). [CrossRef] [PubMed]
  18. E.A. Gibson, A. Paul, N. Wagner, R. Tobey, D. Gaudiosi, S. Backus, I.P. Christov, A. Aquila, E.M. Gullikson, D.T. Attwood, M.M. Murnane, H. C. Kapteyn, �??Coherent Soft X-ray Generation in the Water Window with Quasi-Phase Matching,�?? Science 302, 95-98 (2003). [CrossRef] [PubMed]
  19. J. D. Jackson, Classical Electrodynamics, 3rd edition (Wiley, New York, 1990)
  20. Bruno Rossi, High Energy Particles (Prentice-Hall, New York, 1952)
  21. H. Bethe and W. Heitler, �??On the Stopping of Fast Particles and on the Creation of Positive Electrons,�?? Proc. R. Soc. London, Ser. A 146, 83 (1934). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (334 KB)     
» Media 2: MOV (369 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited