OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 3 — Feb. 9, 2004
  • pp: 436–441
« Show journal navigation

Raman amplifier design using geometry compensation technique

Zhaohui Li, Chao Lu, Jian Chen, and Chunliu Zhao  »View Author Affiliations


Optics Express, Vol. 12, Issue 3, pp. 436-441 (2004)
http://dx.doi.org/10.1364/OPEX.12.000436


View Full Text Article

Acrobat PDF (511 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a simple technique to optimize a multi-wavelength backward-pumped fiber Raman amplifier. Based on the geometric characteristics of Raman gain profile, we approximate it using several straight lines and utilize slope compensation technique to achieve flat and wideband gain profile. Good simulation results are obtained.

© 2004 Optical Society of America

1. Introduction

Optimization of wavelength and power of pump lasers to achieve flat gain spectrum over the amplifier bandwidth is an important issue in distributed Raman amplifier design. Due to pump-to-pump and pump-to-signal Raman interaction, a set of coupled nonlinear equations have to be made to model the Raman amplification process. No simple relationship between Raman gain and pump power of multi-wavelength pumps can be found unless major simplifications are used which will compromise the accuracy [1

1. X Zhou and C Lu, et al, “A simple model and optimal design of a multi-wavelength backward-pumped fiber Raman amplifier,” IEEE Photon. Technol. Lett. 13, 945–947 (2001). [CrossRef]

]. To solve this problem a new method was proposed in [2

2. V. E. Perlin and H. G. Winful, “Optimal design of flat-gain wide-band fiber Raman amplifiers,” IEEE J. Lightwave Technol. 20, 250–254 (2002). [CrossRef]

], where genetic algorithm (GA) was used to find the pump wavelengths and the pump power integrals along the fiber before an iterative algorithm was applied to determine the required pump powers. The approach allows the Raman amplifier design problem to be finally solved irrespective of time-consuming searches of combinations of pump powers and wavelengths. However, its convergence can be slow due to the complexity of GA.

Although no simple relationship between Raman gain and pump power of multi-wavelength pump lasers can be found, it was shown in [2

2. V. E. Perlin and H. G. Winful, “Optimal design of flat-gain wide-band fiber Raman amplifiers,” IEEE J. Lightwave Technol. 20, 250–254 (2002). [CrossRef]

] that the logarithmic Raman gain expressed in dB can be given as a linear addition of pump integrals (integration of pump power distribution of a given pump wavelength along the fiber). As a result, a much simpler method may be used to find the pump wavelengths and the pump integrals first, before an iterative method is used to obtain the pump power. In this paper, we show that through approximating a given Raman gain profile and fiber loss profile using several asymptotic lines, the flat gain spectrum design problem is converted to a simple geometry equalization problem and it is also possible to separate the problem of compensating the gain curve profiles (involving the determination of the pump wavelengths and power integrals) from the problem of calculating the pump power values. This method greatly simplifies the design procedure and enables fast amplifier performance optimization to be carried out.

2. Theoretical model and design method

As shown in [2

2. V. E. Perlin and H. G. Winful, “Optimal design of flat-gain wide-band fiber Raman amplifiers,” IEEE J. Lightwave Technol. 20, 250–254 (2002). [CrossRef]

] the logarithmic net Raman gain of the kth signal channel in dB can be described as a linear superposition of the gain spectra of individual pump wavelengths with respective weighting factors given by the correspending pump integrals, as shown in Eq. (1).

Gk=10ln(10)(αkL+j=n+1jkn+mgjkIj+j=1ngjkIj)
k=n+1,n+2,n+m;j=1,2,n
(1)

Where gjk=gυjjk)/(KeffAeff) for υjk and gjk=-gυkkj) υk/(υj KeffAeff) for υjk, the gain coefficient at pump frequency υi are given by gυi(Δυ)=gR(Δυ). υj0, where gR(Δυ) is the Raman gain spectrum measured at a reference pump frequency υ0, Aeff is the effective area of the fibre and Keff is the polarization factor. k represents one of the m signal channels, j represents one of the n pump wavelengths. gjk and Ij correspond to the gain profile and the power integral (the area below the power distribution curve of pump lights along the fiber) of different pump and signal waves. α and L are the loss coefficient of fiber at the signal wavelength and the length of the fiber respectively.

Fig. 1. Asymptotic linear approximation of a typical Raman gain spectrum gR(Δυ) of a silica fiber at pump wavelength λ0=1µm

In the proposed design approach, we describe the gain profile of a given pump wavelength j using multi-segment straight lines, aj0aj1aj2aj3aj4aj5aj6aj7aj8 as shown in Fig. 1. For simplicity, frequency rather than wavelength is used for the gain spectrum representation. For silica fiber the frequency intervals are aj1aj2=aj3aj4=aj4aj5=aj5aj6=aj6aj7=aj7aj8=1.7THz and aj2aj3=3.4THz respectively. In Fig. 2, S1 is used to represent the gain spectrum of the longest wavelength pump, S2, S3, S4 … and Sn are used to represent the gain spectra of the other pump wavelengths. Typically the integral of the longest wavelength pump light S1 is much larger than those from the other pump wavelengths due to strong stimulated Raman interaction of pumps. As a result, we may neglect the contribution of aj0aj1 and represent the gain spectra of all the other pump wavelengths with aj1aj2aj3aj4aj5aj6aj7aj8 (j=2,3…n). Since the portion of gain spectrum of a12a13 can be considered flat, it is possible to equalize the rest of the gain spectrum of S1, using contributions from the aj1aj2 (j=2…n) portion of the gain spectra of all the other pump sources to achieve flat gain spectrum. The range of the gain spectrum to be equalized will decide the number of pump wavelengths required.

Fig. 2. Schematic diagram of the geometric compensation scheme (i=2,3,4), with wavelength independent loss considered. S1, S2 and S3 show the partial gain spectral; Δf shows the target amplification band; υa1,1, υa21, υa31 and υa32 related to frequency allocation of gain spectra from individual pumps

We consider a case of three pump wavelengths and assume the pump laser with the longest wavelength is S1 and the two other pumps are S2 and S3 as indicated in Fig. 2. The loss of the fibre is considered to be wavelength independent at first. The flat gain profile can be achieved for the signal channels over a frequency region Δf in the gain profile produced by the longest wavelength pump light. After the gain bandwidth region for the amplifier has been decided, the frequency of the longest wavelenght pump light is decided accordingly. We can then use aj1aj2(j=2,3) in the gain profile of the two other pump lights to compensate a portion of the gain profile of S1 to obtain a flat gain spectrum. To compensate the slope of a13a14 in S1 with the slope of a21a22 in S2, we should let the frequency of point a21 be equal to that of point a13, thus the frequency of the second pump light should be shifted 5.1Thz (about 37.5nm) from that of the longest wavelenghth pump light. The pump integral I2 of S2 should be such that the slope of a21a22 is the same as the slope of a13a14 but with opposite sign. Similarly to compensate a14a15 using a31a32 of S3, we should let the frequency of point a31 be equal to that of point a22. Thus the frequency of the third pump light should be shifted 1.7Thz(about 12.75nm) from the frequency of S2. The pump integral I3 of S3 should be such that the slope of a31a32 is the same as the slope of a14a15 but with opposite sign. When wider amplifier bandwidth is needed, we can use more pump wavelengths and compensate the other part of S1 in the same way. The frequencies of all the pump lights can be determined accordingly. However, when deciding the pump integrals, the contributions to the slope of S1 from S2 and S3 should be considered. From the above discussions and with wavelength independent considered, we can obtain following relationship

I1=G10log(e)+αLg(νa1,2)
Ij=I1(g(νa1,j+1)g(νa1,j+2))νa1,j+1νa1,j+2νaj,1νaj,2g(νaj,1)g(νaj,2)
j=2n
(2)

Where G is the targeted Raman net gain in dB. I1 is the pump integral of S1 and Ij is pump integral of Sj. νai,j is the frequency corresponding to point ai,j and g(νai,j) is the Raman gain at frequency νai,j.

Fig. 3. Schematic diagram of the geometric compensation scheme (i=2,3,4), with wavelength dependent loss considered. Triangle: wavelength dependent loss of the fiber; Circle: individual gain spectral

In the above discussion, we have assumed that the loss profile is wavelength independent. However, in a practical system, it is normally not the case. To consider wavelength dependent loss, the loss spectrum of fiber over the same wavelength range as S1 is also represented by multi-segment lines α3 α4 α5 with 1.7THz per segment as shown in Fig.3, where the solid lines highlight the parts in the geometrical compensation model. We can then use it to modify the slope of S1. Eq. (2) can thus be modified as:

Ij=I1(g(νa1,j+1)g(νa1,j+2))(α(νa1,j+1)α(νa1,j+2))νa1,j+1νa1,j+2νaj,1νaj,2g(νaj,1)g(νaj,2)
j=2n
(3)

More divisions for straight line approximation of a gain profile can result in lower ripple and calculation error, however, this in turn requires more pumps in practical implementation that may not be economical, and the design procedure tends to be more complex and inefficient when compared with GA.

3. Numerical example and discussions

The technique is applied to optimize a C band Raman amplifier design as an example. The amplifier is backward pumped by three pump wavelengths with 80km SMF and 0dB targeted net gain. It is designed for DWDM system with 40 signal channels from 1530nm to 1565nm with input signal level at 1mW/ch. Wavelength dependent loss spectrum of the fiber is considered in the design.

Fig. 4. example of a C-band Raman amplifier design

After applying the design procedure discussed above, the resultant theoretical gain curve is given in Fig. 4(a). Clearly a gain spectrum flatness of about 0.5dB can be obtained. The gain ripple is mainly at the two sides of the gain spectrum. Clearly, if more pump wavelengths are used for compensation, better flatness can be obtained. The wavelengths of the pump lights are 1422.5nm, 1434nm and 1469nm, while the corresponding pump powers are 654mW, 349mW and 275mW respectively. To verify the result, we use the complete numerical model given by Kidorf [3

3. Howard Kidorf and Karsten Rottitt, et al, “Pump interaction in a 100-nm bandwidth Raman amplifier,” IEEE Photon. Technol. Lett. 11, 530–533 (1999). [CrossRef]

], which considers the ASE power and Rayleigh scattering but not inter-channel Raman interaction among signal channels. The result is shown in the same figure. Apart from a slight difference in net gain, good agreement with designed theoretical result is achieved. This very small difference is as expected since in our design procedure the effects of Rayleigh scattering and ASE were not considered. When considering inter-channel Raman interaction among signals in the Kidorf model, the net gain spectrum will tilt noticably as shown in Fig. 4(b). This can be rectified by considering the effect of inter-channel Raman interaction in the amplifier design. Here the slope of inter-channel Raman interaction with the given input signal condition is obtained first, it is then used to modify the slope of S1 in the design process before the compensation procedure is carried out. After the amplification condition is established, the newly obtained inter-channel Raman interaction value is then used to modify the slope of S1 before a new compensation procedure is carried out. Very few iterations are required since the Raman tilt hardly changes after the signal distribution in the presence of the pump is more or less established. The obtained new result is plotted in Fig. 4(b). The modified pump powers are 682mW, 370mW and 254mW respectively. Clearly, this allow flat net gain spectrum to be achieved even if inter-channel Raman interaction is taken into consideration.

4. Conclusions

We proposed a simple geometry simulation technique to optimize the design of wideband distributed Raman amplifier gain based on the geometric characteristics of the Raman spectrum. In comparison with traditional solutions using rigorous iterative simulation, the suggested method is simpler and more effective. It is also possible to separate the problem of compensating the gain curve profiles (involving the determination of the pump wavelengths and the power integrals) from the problem of calculating the pump power values. The design results have been verfied using the complete numerical model and good agreement has been achieved.

References and links

1.

X Zhou and C Lu, et al, “A simple model and optimal design of a multi-wavelength backward-pumped fiber Raman amplifier,” IEEE Photon. Technol. Lett. 13, 945–947 (2001). [CrossRef]

2.

V. E. Perlin and H. G. Winful, “Optimal design of flat-gain wide-band fiber Raman amplifiers,” IEEE J. Lightwave Technol. 20, 250–254 (2002). [CrossRef]

3.

Howard Kidorf and Karsten Rottitt, et al, “Pump interaction in a 100-nm bandwidth Raman amplifier,” IEEE Photon. Technol. Lett. 11, 530–533 (1999). [CrossRef]

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(190.5650) Nonlinear optics : Raman effect
(290.5910) Scattering : Scattering, stimulated Raman

ToC Category:
Research Papers

History
Original Manuscript: December 2, 2003
Revised Manuscript: December 27, 2003
Published: February 9, 2004

Citation
Zhaohui Li, Chao Lu, Jian Chen, and Chunliu Zhao, "Raman amplifier design using geometry compensation technique," Opt. Express 12, 436-441 (2004)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-3-436


Sort:  Journal  |  Reset  

References

  1. X Zhou, C Lu, et al, �??A simple model and optimal design of a multi-wavelength backward-pumped fiber Raman amplifier,�?? IEEE Photon. Technol. Lett. 13, 945-947 (2001). [CrossRef]
  2. V. E. Perlin, H. G. Winful, �??Optimal design of flat-gain wide-band fiber Raman amplifiers,�?? IEEE J. Lightwave Technol. 20, 250-254 (2002). [CrossRef]
  3. Howard Kidorf, Karsten Rottitt, et al, �??Pump interaction in a 100-nm bandwidth Raman amplifier,�?? IEEE Photon. Technol. Lett. 11, 530-533 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited