## High speed full range complex spectral domain optical coherence tomography

Optics Express, Vol. 13, Issue 2, pp. 583-594 (2005)

http://dx.doi.org/10.1364/OPEX.13.000583

Acrobat PDF (619 KB)

### Abstract

We present a high speed full range spectral domain optical coherence tomography system. By inserting a phase modulator into the reference arm and recording of every other spectrum with a 90° phase shift (introduced by the phase modulator) we are able to distinguish between negative and positive optical path differences with respect to the reference mirror. A modified two-frame algorithm eliminates the problem of suppressing symmetric structure terms in the final image. To demonstrate the performance of our method we present images of the anterior chamber of the human eye in vivo recorded with an A-scan rate of 10000 depth profiles per second.

© 2005 Optical Society of America

## 1. Introduction

1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science **254**, 1178–1181 (1991). [CrossRef] [PubMed]

2. A. F. Fercher and C. K. Hitzenberger, “Optical coherence tomography,” Progress in Optics **44**, 215–302 (2002). [CrossRef]

3. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Physics **66**, 239–303 (2003). [CrossRef]

4. R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier Domain vs. Time Domain optical coherence tomography,” Opt. Express **11**, 889–894 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889. [CrossRef] [PubMed]

5. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal to noise ratio in spectral domain compared with time domain optical coherence tomography,” Opt. Lett. **28**, 2067–2069 (2003). [CrossRef] [PubMed]

6. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express **11**, 2183–2189 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183. [CrossRef] [PubMed]

7. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh speed spectral domain optical coherence tomography,” Opt. Lett. **29**, 480–482 (2004). [CrossRef] [PubMed]

8. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El- Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. **117**, 43–48 (1995). [CrossRef]

9. G. Häusler and M. W. Lindner, “Coherence radar and spectral radar - new tools for dermatological diagnosis,” J. Biomed. Opt. **3**, 21–31 (1998). [CrossRef]

10. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. **7**, 457–463 (2002). [CrossRef] [PubMed]

9. G. Häusler and M. W. Lindner, “Coherence radar and spectral radar - new tools for dermatological diagnosis,” J. Biomed. Opt. **3**, 21–31 (1998). [CrossRef]

## 2. Theory

2. A. F. Fercher and C. K. Hitzenberger, “Optical coherence tomography,” Progress in Optics **44**, 215–302 (2002). [CrossRef]

3. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Physics **66**, 239–303 (2003). [CrossRef]

8. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El- Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. **117**, 43–48 (1995). [CrossRef]

*I*(

*ν*). An inverse Fourier transform of the intensity, however, yields not the object structure but its autocorrelation [8

8. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El- Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. **117**, 43–48 (1995). [CrossRef]

*τ*

_{r}-

*τ*

_{n}). The reason for this is that the spectral density is a real function, therefore, its Fourier transform will be Hermitian [15]. The consequence is that the reconstructed image is not only corrupted by the DC and autocorrelation terms, but it will also contain a mirror image of the object, with symmetry about the reference mirror position. If an overlap of image and mirror image is to be avoided, only half of the available image depth can be used. This poses the following limitations [9

9. G. Häusler and M. W. Lindner, “Coherence radar and spectral radar - new tools for dermatological diagnosis,” J. Biomed. Opt. **3**, 21–31 (1998). [CrossRef]

11. A. F. Fercher, R. Leitgeb, C. K. Hitzenberger, H. Sattmann, and M. Wojtkowski, “Complex spectral interferometry OCT,” Proc. SPIE. **3564**, 173–178 (1999). [CrossRef]

11. A. F. Fercher, R. Leitgeb, C. K. Hitzenberger, H. Sattmann, and M. Wojtkowski, “Complex spectral interferometry OCT,” Proc. SPIE. **3564**, 173–178 (1999). [CrossRef]

13. P. Targowski, M. Wojtkowski, A. Kowalczyk, T. Bajraszewski, M. Szkulmowski, and I. Gorczynska, “Complex spectral OCT in human eye imaging in vivo,” Opt. Commun. **229**, 79–84 (2004). [CrossRef]

14. R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, “Phase shifting algorithm to achieve high speed long depth range probing by frequency domain optical coherence tomography,” Opt. Lett. **28**, 2201–2003 (2003). [CrossRef] [PubMed]

*I*(

*ν*,

*Δϕ*=90°) represents the spectral intensity recorded after a phase shift of

*Δϕ*=90°. An inverse Fourier transform of this signal now yields a first complex time domain signal

*S̃*

_{1}(

*τ*):

*DC*=Γ

_{rr}(

*τ*)+

_{nn}(

*τ*) and

*AC*=

*τ*+(

*τ*

_{m}-

*τ*

_{n})]+Γ[

*τ*-(

*τ*

_{m}-

*τ*

_{n})]} are the DC and autocorrelation terms of eq. (1). Similarly, the inverse Fourier transform of the complex conjugate spectral intensity signal yields a second complex time domain signal

*S̃*

_{2}(

*τ*):

*S*

_{1}contains the direct structure term, signal

*S*

_{2}the mirror term. If we calculate the difference:

*S*(

*τ*)] to obtain only the positive values that correspond to the real structure:

*τ*

_{1}and

*τ*

_{2}with

*τ*

_{r}-

*τ*

_{1}=-(

*τ*

_{r}-

*τ*

_{2}). In this case Δ

*S*(

*τ*) will be zero in case of equal reflectivities of the two symmetric backscatterers (in case of different reflectivities, a reduced signal corresponding to the difference in reflectivities will be observed).

*DC*and

*AC*)

*M*

_{1}and

*M*

_{2}are:

*τ*

_{1}, signals

*M*

_{1}and

*M*

_{2}will each have peaks located at

*τ*=-(

*τ*

_{r}-

*τ*

_{1}) and

*τ*=+(

*τ*

_{r}-

*τ*

_{1}), i.e., they will be both mirror symmetric and are exactly equal. The difference Δ

*M*

_{asym}(

*τ*) will be zero, indicating that no symmetric structure term was found.

*τ*

_{1}and

*τ*

_{2}with

*τ*

_{r}-

*τ*

_{1}=-(

*τ*

_{r}-

*τ*

_{2}), the two signals will be:

*M*

_{sym}(

*τ*)=|

*M*

_{1,sym}(

*τ*)-

*M*

_{2sym}(

*τ*)| contains signal peaks at positions (and only at those positions) where symmetric sample structure is located. Since Δ

*M*

_{asym}(

*τ*) will always be zero, Δ

*M*(

*τ*)=Δ

*M*

_{sym}(

*τ*), i.e., Δ

*M*(

*τ*) contains signal peaks only at symmetric sample structure terms.

*S*

^{+}(

*τ*) (sample structure with suppressed symmetric structure terms) and Δ

*M*(

*τ*) (symmetric structure terms). However, in real cases the peaks of Δ

*M*(

*τ*) will be, in general, smaller than what would be expected from the corresponding sample reflectivities. The reason is that in our simplified derivation of equation (9) we assumed zero initial phase offset in the cosine terms of

*I*(

*ν*). In general, however, there will be such offset values. The consequence is that the peaks in Δ

*M*

_{sym}(

*τ*) (and in Δ

*M*(

*τ*)) are smaller than indicated by eq. (9). Therefore, Δ

*M*(

*τ*) will just be used to locate the positions of symmetric structure peaks, and the corresponding peak magnitudes will be taken from signal

*S*

_{1}(

*τ*) and replace the corresponding values in Δ

*S*

^{+}(

*τ*). The final equation describing the true object structure

*F*(

*τ*) is:

*S*

_{1}(

*τ*). In practical applications, a certain threshold value has to be applied to the gating process to avoid erroneously gated data points caused by noise (in this work, a constant threshold was used throughout an entire image).

## 3. Experimental setup

^{2}(Atmel Aviiva M2 CL 2014). The maximum line rate of the camera is 29 kHz and via camera link and a high speed frame grabber card (PCI 1428 National Instruments) data could be transferred continuously to a personal computer. The resolution of the camera is 12 bit per pixel. Since a spectrometer collects data as a function of wavelength, but the Fourier transform relationship is between time (distance) and frequency (wavenumber), the wavelength dependent data are re-sampled by linear interpolation to be equidistant in frequency space [10

10. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. **7**, 457–463 (2002). [CrossRef] [PubMed]

_{max}is given by the Nyquist limit of spectral resolution and is fixed by the spectrometer settings; i.e.: it depends on the wavelength resolution δλ of the spectrometer and the center wavelength λ

_{0}of the light source [9

**3**, 21–31 (1998). [CrossRef]

10. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. **7**, 457–463 (2002). [CrossRef] [PubMed]

_{max}=

4. R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier Domain vs. Time Domain optical coherence tomography,” Opt. Express **11**, 889–894 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889. [CrossRef] [PubMed]

**3**, 21–31 (1998). [CrossRef]

16. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express **12**, 367–376 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367. [CrossRef] [PubMed]

16. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express **12**, 367–376 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367. [CrossRef] [PubMed]

19. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express **12**, 2404–2422 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404. [CrossRef] [PubMed]

## 4. Results

*I*(

*ν*)). One can clearly see the strong DC term (which exceeds the range of the shown y axis), some fixed pattern noise, and the object peak and its mirror image located on both sides of the DC peak. Figure 2b shows signal

*S*

_{1}(black curve), obtained from the complex spectrum, and signal

*S*

_{2}(red curve), calculated from the complex conjugate spectrum.

*S*=

*S*

_{1}-

*S*2. The DC term, the mirror image, and the fixed pattern noise terms are removed. The signal Δ

*S*

^{+}displaying the object structure is obtained after multiplication of Δ

*S*

^{+}by the Heaviside step function that eliminates the negative peak (fig. 2d). From fig. 2c one can easily imagine that symmetric structure terms (i.e., positive and negative peaks at the same abscissa position) would cancel each other.

*I*(

*ν*). The overlapping mirror images are clearly visible. Furthermore residual DC and fixed pattern noise terms (straight vertical lines) can be seen. Hence it is difficult to recognize morphological details. In a next step the original two-frame technique [14

14. R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, “Phase shifting algorithm to achieve high speed long depth range probing by frequency domain optical coherence tomography,” Opt. Lett. **28**, 2201–2003 (2003). [CrossRef] [PubMed]

*S*

^{+}(

*τ*), cf. fig. 3b. The mirror image is removed and the DC and fixed pattern noise terms are reduced. However, some shadow-like artifacts can be observed at positions where backscattering sites in the sample are symmetric with respect to the zero position (cf. areas where the real image of the cornea overlaps with its mirror image in fig. 3a; due to the statistical distribution of backscattering sites and intensities, there is no complete extinction of the corneal signals in these areas).

*M*(eq. (8)) to find the locations of the suppressed symmetric structure signals. Δ

*M*is then used to gate signal

*S*

_{1}to extract position and magnitude of the missing structure signal. Figure 3c shows the suppressed structure terms found in this way. Finally, fig. 3d shows the true object structure

*F*(

*τ*) obtained by eq. (10). It equals the gated sum of figs. 3b and 3c. The shadows are essentially eliminated. (The residual vertical lines are probably caused by reflections within the reference arm because fixed pattern noise that is not affected by the phase shift between alternate A-lines is removed by the subtraction step of eq. (5)).

## 5. Discussion

*ΔM*(

*τ*) is used to determine the locations of symmetric structure terms. It should be pointed out that the measured value of

*ΔM*(

*τ*) cannot be used directly as a measure of the signal magnitude of these symmetric terms. The reason is that the measured value of

*ΔM*deviates from the value provided by eq. (8) by a factor that depends on the initial phase offset of the cosine terms of which

*I*(

*ν*) consists (the phase offset was assumed to be zero in the derivation of eq.(8)). This factor varies between 1 (zero phase offset) and 0 (45° phase offset). Therefore,

*ΔM*(

*τ*) is just used to locate the positions of the symmetric structure terms; their values are obtained by gating signal

*S*

_{1}(

*τ*) with the positions where

*ΔM*(

*τ*) exceeds a threshold larger than noise. Only in rare cases, where the initial phase offset of a cosine term in the real-valued intensity signal

*I*(

*ν*) will be close to 45°, the method might fail (because then

*ΔM*will be zero). However, given the random distribution of backscattering sites in scattering tissue, only a very small fraction of data points will be missed for this reason, and in a logarithmic intensity plot, as usual in OCT, this effect will probably be negligible.

*ϕ*=90° between alternate A-lines. Only in this case, the separation of structure and mirror terms in signals

*S*

_{1}(

*τ*) and

*S*

_{2}(

*τ*) will be perfect. If Δ

*ϕ*deviates from 90°, signal

*S*

_{1}(

*τ*) will contain residual mirror terms, and signal

*S*

_{2}(

*τ*) will contain residual structure terms. However, these residual terms in

*S*

_{1}and

*S*

_{2}have no influence on the suppression of the mirror image in the actually displayed signal Δ

*S*

^{+}(

*τ*) (or

*F*(

*τ*)) (as long as the residual mirror term is not stronger than the real structure term). This can best be seen in an example where a large deviation from the ideal value of Δ

*ϕ*=90° is introduced. Figure 4 shows such an example, where Δ

*ϕ*≅40° (sample: attenuated mirror). From fig. 4a, which shows signals

*S*

_{1}and

*S*

_{2}, it can be seen that the residual mirror term has ~ half of the amplitude of the real structure term. After calculating Δ

*S*(fig. 4b), the real structure term is reduced in height (by a factor of ~2), and a corresponding negative mirror term is observed. In a final step, Δ

*S*

^{+}is calculated (fig. 4c). The negative mirror term is eliminated by the step function, the reduced structure term remains. This example shows that phase errors have no influence on the effectiveness of the algorithm to eliminate mirror terms. Instead, the effect of phase errors is to reduce the signal magnitude of real structure terms (because the residual mirror terms are subtracted). The consequence is a reduction of SNR. Simulations have shown that a phase error of 30° causes a SNR drop by 3 dB. This indicates that our algorithm is rather immune to small phase errors. If, on the other hand, very large phase errors occur (>90°), real image and mirror image are reversed (cf. figure 5).

_{0}, the shift will deviate from 90° for the other wavelengths of the broadband source. With λ

_{0}=821 nm and Δλ=25 nm, as used in our setup, the polychromatic phase error within the FWHM bandwidth will not exceed 1.4°. This can be neglected in the light of the previous discussion.

20. A. G. Podoleanu, G. M. Dobre, D. J. Webb, and D. A. Jackson, “Coherence imaging by use of a Newton rings sampling function,” Opt. Lett. **21**, 1789–1791 (1996). [CrossRef] [PubMed]

21. A. G. Podoleanu, G. M. Dobre, and D. A. Jackson, “En face coherence imaging using galvanometer scanner modulation,” Opt. Lett. **23**, 147–149 (1998). [CrossRef]

*S*

_{1}and

*S*

_{2}are switched, which, after calculation of Δ

*S*

^{+}, results in a flip of the image. This motion induced artifact must not be confused with the so called phase washout. A detailed description of this phenomenon can be found in [22

22. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency domain ranging,” Opt Express **12**, 2977–2998 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2977. [CrossRef] [PubMed]

13. P. Targowski, M. Wojtkowski, A. Kowalczyk, T. Bajraszewski, M. Szkulmowski, and I. Gorczynska, “Complex spectral OCT in human eye imaging in vivo,” Opt. Commun. **229**, 79–84 (2004). [CrossRef]

14. R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, “Phase shifting algorithm to achieve high speed long depth range probing by frequency domain optical coherence tomography,” Opt. Lett. **28**, 2201–2003 (2003). [CrossRef] [PubMed]

## Acknowledgments

## References and links

1. | D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science |

2. | A. F. Fercher and C. K. Hitzenberger, “Optical coherence tomography,” Progress in Optics |

3. | A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Physics |

4. | R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier Domain vs. Time Domain optical coherence tomography,” Opt. Express |

5. | J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal to noise ratio in spectral domain compared with time domain optical coherence tomography,” Opt. Lett. |

6. | M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express |

7. | N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh speed spectral domain optical coherence tomography,” Opt. Lett. |

8. | A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El- Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. |

9. | G. Häusler and M. W. Lindner, “Coherence radar and spectral radar - new tools for dermatological diagnosis,” J. Biomed. Opt. |

10. | M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. |

11. | A. F. Fercher, R. Leitgeb, C. K. Hitzenberger, H. Sattmann, and M. Wojtkowski, “Complex spectral interferometry OCT,” Proc. SPIE. |

12. | M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. |

13. | P. Targowski, M. Wojtkowski, A. Kowalczyk, T. Bajraszewski, M. Szkulmowski, and I. Gorczynska, “Complex spectral OCT in human eye imaging in vivo,” Opt. Commun. |

14. | R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, “Phase shifting algorithm to achieve high speed long depth range probing by frequency domain optical coherence tomography,” Opt. Lett. |

15. | R. N. Bracewell, |

16. | N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express |

17. | R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A.F Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express |

18. | B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S. H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Ultrahigh-resolution high speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express |

19. | M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express |

20. | A. G. Podoleanu, G. M. Dobre, D. J. Webb, and D. A. Jackson, “Coherence imaging by use of a Newton rings sampling function,” Opt. Lett. |

21. | A. G. Podoleanu, G. M. Dobre, and D. A. Jackson, “En face coherence imaging using galvanometer scanner modulation,” Opt. Lett. |

22. | S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency domain ranging,” Opt Express |

23. | American National Standards Institute: “American National Standard for Safe Use of Lasers,” ANSI Z136.1-2000. Orlando, Laser Institute of America, 35–49 (2000). |

**OCIS Codes**

(170.3880) Medical optics and biotechnology : Medical and biological imaging

(170.4470) Medical optics and biotechnology : Ophthalmology

(170.4500) Medical optics and biotechnology : Optical coherence tomography

(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine

**ToC Category:**

Research Papers

**History**

Original Manuscript: November 24, 2004

Revised Manuscript: January 12, 2005

Published: January 24, 2005

**Citation**

Erich Götzinger, Michael Pircher, Rainer Leitgeb, and Christoph Hitzenberger, "High speed full range complex spectral domain optical coherence tomography," Opt. Express **13**, 583-594 (2005)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-2-583

Sort: Journal | Reset

### References

- D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254 , 1178-1181 (1991) [CrossRef] [PubMed]
- A. F. Fercher and C. K. Hitzenberger, "Optical coherence tomography," Progress in Optics 44, 215-302 (2002) [CrossRef]
- A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography-principles and applications," Rep. Prog. Physics 66, 239-303 (2003) [CrossRef]
- R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier Domain vs. Time Domain optical coherence tomography," Opt. Express 11, 889-894 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889</a> [CrossRef] [PubMed]
- J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal to noise ratio in spectral domain compared with time domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003) [CrossRef] [PubMed]
- M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183</a> [CrossRef] [PubMed]
- N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "In vivo human retinal imaging by ultrahigh speed spectral domain optical coherence tomography," Opt. Lett. 29, 480- 482 (2004) [CrossRef] [PubMed]
- A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El- Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995) [CrossRef]
- G. Häusler and M. W. Lindner, "Coherence radar and spectral radar - new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998) [CrossRef]
- M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002) [CrossRef] [PubMed]
- A. F. Fercher, R. Leitgeb, C. K. Hitzenberger, H. Sattmann, and M. Wojtkowski, "Complex spectral interferometry OCT," Proc. SPIE. 3564, 173-178 (1999) [CrossRef]
- M. Wojtkowski , A. Kowalczyk, R. Leitgeb, and A. F. Fercher, "Full range complex spectral optical coherence tomography technique in eye imaging," Opt. Lett. 27, 1415-1417 (2002) [CrossRef]
- P. Targowski, M. Wojtkowski, A. Kowalczyk, T. Bajraszewski, M. Szkulmowski, and I. Gorczynska, "Complex spectral OCT in human eye imaging in vivo," Opt. Commun. 229, 79-84 (2004) [CrossRef]
- R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, "Phase shifting algorithm to achieve high speed long depth range probing by frequency domain optical coherence tomography," Opt. Lett. 28, 2201-2003 (2003) [CrossRef] [PubMed]
- R. N. Bracewell, The Fourier transform and its applications, 3rd ed. (McGraw-Hill, New York, 2000)
- N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367</a> [CrossRef] [PubMed]
- R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A.F Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2156">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2156</a> [CrossRef] [PubMed]
- B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S. H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Ultrahigh-resolution high speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12, 2435-2447 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435</a> [CrossRef] [PubMed]
- M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultra high resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404</a> [CrossRef] [PubMed]
- A. G. Podoleanu, G. M. Dobre, D. J. Webb, and D. A. Jackson, "Coherence imaging by use of a Newton rings sampling function," Opt. Lett. 21, 1789-1791 (1996) [CrossRef] [PubMed]
- A. G. Podoleanu, G. M. Dobre, and D. A. Jackson, "En face coherence imaging using galvanometer scanner modulation," Opt. Lett. 23, 147-149 (1998) [CrossRef]
- S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, "Motion artifacts in optical coherence tomography with frequency domain ranging," Opt Express 12, 2977- 2998 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2977">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2977</a> [CrossRef] [PubMed]
- American National Standards Institute: "American National Standard for Safe Use of Lasers," ANSI Z136.1- 2000. Orlando, Laser Institute of America, 35-49 (2000).

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.