OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 21 — Oct. 17, 2005
  • pp: 8406–8423
« Show journal navigation

Atomic (or molecular) guiding using a blue-detuned doughnut mode in a hollow metallic waveguide

Zhengling Wang, Meng Dai, Jianping Yin, and Zhengling Wang  »View Author Affiliations


Optics Express, Vol. 13, Issue 21, pp. 8406-8423 (2005)
http://dx.doi.org/10.1364/OPEX.13.008406


View Full Text Article

Acrobat PDF (559 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a new scheme to guide cold atoms (or molecules) using a blue-detuned TE01 doughnut mode in a hollow metallic waveguide (HMW), and analyze the electromagnetic field distributions of various modes in the HMW. We calculate the optical potentials of the TE01 doughnut mode for three-level atoms using dressed-atom approach, and find that the optical potential of the TE01 mode is high enough to guide cold atoms released from a standard magneto-optical trap. Our study shows that when the input laser power is 0.5W and its detuning is 3GHz, the guiding efficiency of cold atoms in the straight HMW with a hollow radius of 15 μm can reach 98%, and this guiding efficiency will be almost unchanged with the change of curvature radius R of the bent HMW as R > 2cm, which is a desirable scheme to do some atom-optics experiments or realize a computer-controlled atom lithography with an arbitrary pattern. We also analyze the losses of the guided atoms in the HMW due to the spontaneous emission and background thermal collisions and briefly discuss some potential applications of our guiding scheme in atom and molecule optics.

© 2005 Optical Society of America

1. Introduction

Since the HMW has a larger complex refractive index in an optical frequency region [13

13 . E. A. J. Marcatili and R. A. Schmeltzer , “ Hollow metallic and dielectric waveguides for long distance optical transition and lasers ,” Bell Syst. Tech. J. 43 , 1783 – 1809 ( 1964 ).

,14

14 . E. Garmire , T. McMahon , and M. Bass , “ Propagation of infrared light in flexible hollow waveguide ,” Appl. Opt. 15 , 145 – 150 ( 1976 ). [CrossRef] [PubMed]

], it is far less sensitive to the curvature of the guide axis. If a blue-detuned TE01 doughnut mode in the HMW with a hollow radius of a few 10 - μm can be used to guide cold atoms, it cannot only retains the flexibility of the HOF guiding, but also reserves some advantages of the atomic guiding using a blue-detuned DHB. In this case, cold atoms cannot only be guided in the dark region of the TE01 mode in the HMW (which will suffer the minimal light shift and the lowest coherence loss, and obtain a better vacuum), but also be cooled by the intensity-gradient-induced Sisyphus effect from the TE01 doughnut mode, which can be used to realize the computer-controlled atomic lithograph or generate an ultracold atomic beam and so on. So it would be interesting and worthwhile to study and realize a novel atomic guiding by using the blue-detuned TE01 mode in the HMW.

This paper is organized as follows. In Sec.2, we propose a new scheme to guide cold atoms, and analyze the mode structures of the electromagnetic fields in the HMW and their propagation losses, and calculate the absolute intensity distributions of the TE01 mode in the HMW. In Sec.3, the optical potentials for a Λ -configuration three-level atom and its spontaneous-emission rates are derived and calculated. In Sec.4, the guiding efficiency of cold atoms in the HMW is calculated by using the atom flux probability based on a classical model, and the corresponding loss mechanisms are discussed. In Sec.5, some potential applications of our guiding scheme in the fields of atom and molecule optics are briefly discussed. Some main results and conclusions are summarized in the final Section.

2. Guiding scheme and electromagnetic fields in HMW

2.1. Guiding scheme of cold atoms

A proposed scheme to guide cold atoms using a blue-detuned TE01 doughnut mode in the cylindrical HMW is shown in Fig. 1. A collimated Gaussian beam with a right-rotated (σ+) circular polarization passes through a 2π phase plate and is focused by a positive lens with a focal length f , and a focused hollow beam (FHB) will be generated [15

15 . Y. Xia and J. Yin , “ Generation of a focused hollow beam by an 2 Pi-phase plates and its applications in atom or molecule optics ,” J. Opt. Soc. Am. B 22 , 529 – 536 ( 2005 ). [CrossRef]

] and coupled into the hollow region of the HMW. The HMW [see Fig. 1(a)] is composed of a hollow region with a radius a, a thin metallic layer with a negligible thickness and a cladding with an infinite outer radius.

Fig. 1. (a) The structure of the HMW; (b) schematic diagram of atomic guiding. HMW, BDGB, MOT and 2π PP stand for hollow metallic waveguide, blue-detuned Gaussian beam, magneto-optic trap and 2π -phase plate.

Since there is the largest dark spot size at the - f/2 position of the FHB, our magneto-optical trap (MOT) is prepared at this -f/2 position. To obtain cold atoms and realize an efficiently loading of cold atoms from the MOT into the TE01 mode in the hollow region of the HMW, a two-dimensional (2D) moving optical molasses is used to prepare the MOT and generate a cold atomic beam along the propagating direction of the FHB. When the incident Gaussian beam is blue-detuned, the cold atomic beam extracted from the MOT is focused and loaded into the dark central region of the TE01 mode in the HMW by using the blue-detuned FHB as an atomic funnel, and then to realize laser guiding of cold atoms in the HMW.

2.2. Mode analysis of the electromagnetic fields in the HMW

We assume that the wavelength λ of the coupling FHB in free space is much smaller than the hollow radius a of the HMW, and then the laser energy will nearly not be propagated in the metallic layer due to almost zero penetrating depth into the metallic layer of the HMW, but essentially propagated in the hollow region, and there is almost no energy loss in the HMW due to reflection of the metal layer [13

13 . E. A. J. Marcatili and R. A. Schmeltzer , “ Hollow metallic and dielectric waveguides for long distance optical transition and lasers ,” Bell Syst. Tech. J. 43 , 1783 – 1809 ( 1964 ).

]. In the cylindrically symmetric coordinates (r,ϕ,z), the electromagnetic field modes Er , Eϕ , Hr and Hϕ in the hollow region of the HMW can be written as

Er=1ki2(Esr+mrμ0ωHz),
(1a)
Eϕ=1ki2(0ωHzr+mrγEz),
(1b)
Hr=1ki2(Hzrmrε0ωEz),
(1c)
Hϕ=1ki2(0ωEzr+mrγHz),
(1d)

where ω is the angular frequency, γ is the axial propagation constant, m is the azimuthal index, and ki2 - μ 0 ε 0 ω 2 - γ 2 . Ez and Hz obey Helmholtz equations and can be further written as

Ez(r)=C1Jm(kir)+C2Nm(kir),
(2a)
Hz(r)=C3Jm(kir)+C4Nm(kir),
(2b)

where Jm (kir) is the first kind Bessel function and Nm (kir) is the second kind Bessel function. Considering the finite value of Ez (r)and Hz (r) at r = 0 , we obtain C 2 = C 4 = 0. Therefore, substituting Eq. (2) into Eq. (1

1 . J. Yin , W. Gao , and Y. Zhu , “ Generation of dark hollow beams and their applications ,” Prog. Opt. 45 , 119 – 204 ( 2003 ). [CrossRef]

), we derive the expressions of Er and Eϕ as follows

Er=1ki2[iγ0C1Jm'(kir)+mrμ0ωC3Jm(kir)],
(3a)
Eϕ=1ki2[iμ0ωC3Jm'(kir)+mrγC1Jm(kir)].
(3b)

Considering the boundary condition of r = a and under the approximation of |ηm |umq << ka , we obtain kiaumq (1 - m /ka) ≈ umq [13

13 . E. A. J. Marcatili and R. A. Schmeltzer , “ Hollow metallic and dielectric waveguides for long distance optical transition and lasers ,” Bell Syst. Tech. J. 43 , 1783 – 1809 ( 1964 ).

], here k = 2π/λ and umq is the qth root of Bessel function of the first kind: J m-1 (umq ) = 0, ηm = 1/(ηd2 - 1)1/2, and ηd = n + is the complex refractive index of the metallic layer in the HMW.

From the above analysis, we know that there are three types of modes in the hollow region of the HMW [13

13 . E. A. J. Marcatili and R. A. Schmeltzer , “ Hollow metallic and dielectric waveguides for long distance optical transition and lasers ,” Bell Syst. Tech. J. 43 , 1783 – 1809 ( 1964 ).

]: transverse circular electric modes TE0q, transverse circular magnetic modes TM0q and hybrid modes EHmq. First, the lines of electric field of the TE0q modes are transverse concentric circles centered on the z axis, and their magnetic-field lines are in the planes containing the z axis. In particular, the first-order TE01 mode has a circular polarization and a doughnut-shaped intensity distribution, which will be analyzed in some detail below. Second, the lines of electric field of the TM0q modes are contained in radial planes, while their magnetic-field lines are transverse concentric circles centered on the z axis. The first-order TM01 mode has a linear polarization and a doughnut-shaped intensity distribution. In final, the EHmq modes are hybrid, and the electric and magnetic field are almost transverse. In fact, the first-order EH11 mode is a Gaussian one, it has a linear polarization and the Gaussian intensity distribution in the HMW.

Since a focused doughnut beam with a circular polarization is coupled into the hollow region in the HMW, a TE01 mode that has same polarization and similar intensity distribution will be excited selectively in the hollow regime of the cylindrical HMW, while the TM0q and EHmq modes with a linear polarization cannot be effectively excited [16

16 . R. L. Abrams and A. N. Chester , “ Resonator theory for hollow waveguide lasers ,” Appl. Opt. 13 , 2117 – 2125 ( 1974 ). [CrossRef] [PubMed]

]. So we only consider the electric field distribution of the TE01 mode in the HMW due to the magnetic field distribution of the TE01 mode is far smaller than its electric field one.

For TE0q mode, we have m = 0 and Ez = 0 . From Eqs. (1)–(3), when q=1, the electric field of the TE01 mode in the hollow region of the HMW can be expressed as

Er=0,
(4a)
Eϕ(r)=0ωC3ki2J1(u01ra).
(4b)
Fig. 2. Normalized electric field distribution: (a) against the radial position r for the TE01 mode; (b) against the propagation distance z.

From Eq. (4b), we calculate the normalized electric field distribution of the TE01 mode in the HMW for three different hollow radiuses, and the results are shown in Fig. 2(a). It is clear from Fig. 2(a) that the TE01 mode in the HMW is a doughnut-shaped one, which can be used to guide cold atoms as the incident laser beam is blue-detuned.

2.3. Mode coupling and the absolute intensity distribution of the TE01 mode

In the focal plane of z=0, the electric field profile of the FHB can be approximately described by the TEM01* doughnut beam mode as follows [15

15 . Y. Xia and J. Yin , “ Generation of a focused hollow beam by an 2 Pi-phase plates and its applications in atom or molecule optics ,” J. Opt. Soc. Am. B 22 , 529 – 536 ( 2005 ). [CrossRef]

]

EFHB(r)=(4k1Pinπ)12×rw02×exp(r2w02),
(5)

where P in is the input power of the FHB, w 0 is the beam waist of the FHB in the focal plane, k 1 is the fitting parameter. If such a FHB with a circular polarization is coupled into the HMW, the TE01 mode can be selectively excited, and the coupling efficiency A, i.e., the ratio of the power P of the TE01 mode to the input power P in of the FHB, is given by [17

17 . M. Saito , S. Sato , and M. Miyagi , “ Loss characteristics of infrared hollow waveguides in multimode transmission ,” J. Opt. Soc. Am. A 10 , 277 – 282 ( 1993 ). [CrossRef]

]

A=0aEFHB(r)Eϕ(r)rdr20EFHB(r)2rdr0aEϕ(r)2rdr.
(6)

From Eq. (6), we calculate the dependence of the coupling efficiency A for the TE01 mode on the beam waist w 0 of the incident FHB and find that there is a maximum coupling efficiency for a given a. If we choose the beam waist of the FHB as w 0 = 8.46μm and a = 15 μm , the coupling efficiency A for the TE01 mode can be reached the maximum value 96.7%, i.e., P ≈ 0.967Pin , while the coupling efficiency for the TE02 mode is 0.94%, and the coupling efficiency for other modes (including a EH11 Gaussian mode) is only ~ 2.36%.

The absolute radial intensity distribution of the TE01 mode in the HMW with a radius a is set as I(r), and supposing that the propagating loss of the TE01 mode can be neglected (see below), the propagating power P of the TE01 mode in the HMW can be calculated by P = 0a 2πrI(r)dr. So we can obtain the absolute intensity distribution of the TE01 mode in the HMW as follows

I(r)=PJ12(u01ra)2π0aJ12(u01ra)rdr=PJ12(u01ra)a2πJ0(μ01)J2(μ01).
(7)

From Eq. (7) and considering P ≈ 0.967Pin , we calculate the intensity distribution of the TE01 mode in the HMW as the hollow radius a = 15μm and P in = 0.5 W, and show that the maximum intensity I 0 of the TE01 mode at the radial position r 0 = 7.2μm can reach 1.43×108mW/cm2 , which is far greater than the maximum evanescent-wave intensity (1.64×106mW/cm2) of the LP01 mode in the HOF with a hollow radius a = 3.5μm and the same power [2

2 . J. Yin , Y. Zhu , W. Wang , Y. Wang , and W. Jhe , “ Optical potential for atom guidance in a dark hollow laser beam ,” J. Opt. Soc. Am. B 15 , 25 – 33 ( 1998 ). [CrossRef]

].

2.4. Propagation losses of various modes in the HMW

In the HMW, the TE0q mode for the straight waveguide has a loss coefficient [13

13 . E. A. J. Marcatili and R. A. Schmeltzer , “ Hollow metallic and dielectric waveguides for long distance optical transition and lasers ,” Bell Syst. Tech. J. 43 , 1783 – 1809 ( 1964 ).

], where η 0 = 1/(ηd2 - 1)1/2 from which we can see that the losses for the higher order TE0q modes are increased by a factor of 3 for each higher order mode.

To know and compare the straight propagation losses of the EH11, TM01 and TE01 modes in the different HMWs [13

13 . E. A. J. Marcatili and R. A. Schmeltzer , “ Hollow metallic and dielectric waveguides for long distance optical transition and lasers ,” Bell Syst. Tech. J. 43 , 1783 – 1809 ( 1964 ).

,14

14 . E. Garmire , T. McMahon , and M. Bass , “ Propagation of infrared light in flexible hollow waveguide ,” Appl. Opt. 15 , 145 – 150 ( 1976 ). [CrossRef] [PubMed]

], we calculate the dependences of the electric field amplitudes of the EH11, TM01 and TE01 modes in two HMWs (Al [14

14 . E. Garmire , T. McMahon , and M. Bass , “ Propagation of infrared light in flexible hollow waveguide ,” Appl. Opt. 15 , 145 – 150 ( 1976 ). [CrossRef] [PubMed]

] and Ni [18

18 . M. Miyagi and S. Kawakami , “ Design theory of dielectric-coated circular metallic waveguide for infrared transition ,” IEEE J. Lightwave Technol. 2 , 116 – 126 ( 1984 ). [CrossRef]

]) on the propagation distance z for a = 15μm, λ = 0.78μm, and the results are shown in Fig. 2(b), here the electric field amplitude of the EH11 or TM01 mode is normalized by that of the TE01 mode. We can see from Fig. 2(b) that the EH11 (or TM01) mode in the HMWs will be attenuated rapidly with the propagation distance z, and the greater the complex refractive index of the metallic layer is, the larger the propagation loss of the EH11 (or TM01) mode in the HMW is. In particular, when the metallic Al hollow waveguide is used, the effective straight propagation distance of the EH11 (or TM01) mode determined by 1/e of the field amplitude is only about 3 mm (or 0.7mm). While the loss of the TE01 mode in the HMWs is very small so that it can be neglected in several 10-cm propagating distance, and it is nearly independent of the complex refractive index of the metallic layer on the propagation distance z within several 10-cm region.

Moreover, the propagation loss of the TE01 mode in the bending HMW with a = 15μm is given by α01bα 01(1 + 2.97×10-4/R 2) [13

13 . E. A. J. Marcatili and R. A. Schmeltzer , “ Hollow metallic and dielectric waveguides for long distance optical transition and lasers ,” Bell Syst. Tech. J. 43 , 1783 – 1809 ( 1964 ).

,14

14 . E. Garmire , T. McMahon , and M. Bass , “ Propagation of infrared light in flexible hollow waveguide ,” Appl. Opt. 15 , 145 – 150 ( 1976 ). [CrossRef] [PubMed]

], where R is the curvature radius of the HMW. Therefore, the electric field amplitude of the TE01 mode is almost unchanged for both strait and bent (R > 2cm) HMW with a length of several 10-cm.

From the above analysis, we find that an aluminum HMW with a smaller hollow radius (such as a = 15μm) should be desirable to selectively excite and propagate a TE01 doughnut mode in the HMW by using a circular polarized FHB, and to efficiently restrain the excitation and propagation of the HE11 (TM01 and other higher-order) mode in the HMW.

3. Optical potentials and spontaneous emissions

3.1. Optical potentials for a three-level atom

We consider a Λ -configuration three-level atom with one excited state |e〉 and two hyperfine ground states |g 1〉 and |g 2〉, which is interacted with an intense laser field that has a detuning δ from the atomic resonant frequency ω 0 between the lower hyperfine ground state |g 1〉 and the excited state |e〉.

The equation of eigenstates of the atom-light interaction system in the dressed-state picture can be written as

ħ(n+1)ωL+δhfs0G2(n+1)120(n+1)ωLG1(n+1)12G2(n+1)12G1(n+1)12L+ω0AiBiCi=EDriAiBiCi,
(8)

where ωL is the laser frequency, δhfs is the level splitting between two hyperfine ground states, and G 1 (G 2) is a real coupling parameter corresponding to Rabi frequency Ω12) between |g 1,n + 1〉 (|g 2,n + 1) and |e,n〉 . In Eq.(8), Ai , Bi and Ci are three probability amplitudes respectively in |g 2,n + 1〉 , |g 1,n + 1〉 and |e,n〉 corresponding to the dressed-eigenstate |i,n〉, here i=1,2,3.

Since the exact solutions of Eq. (8) are very complex and cannot give clear analytic relationships between the eigenenergies (or optical potentials) and the parameters (δ,δhfs12) of atom-light interaction system, we substitute a trial solution EDr1t =(n + 1)ħωL - ħδ/2±ħ(δ 2 + Ω12)/2 into Eq.(8) and derive two other solutions EDr2t and EDr3t. Here the trial solution EDr1t is the eigenenergy of the dressed-eigenstate |1,n〉 coming from the two-level atom model [19–21

19 . V. I. Balykin , D. V. Laryushin , M. V. Subbotin , and V. S.L etokhov , “ Increase of the atomic phase density in a hollow laser waveguide ,” JETP Lett. 63 , 802 – 807 ( 1996 ). [CrossRef]

], and EDr2t, EDr3t correspond to dressed-eigenstates |2,n〉, |3,n〉 respectively. Then substituting EDr2t into Eq. (8) and considering the conservation of energy, we derive two other eigenenergies, by which we can obtain three approximate expressions of the optical potentials corresponding to the dressed-eigenstates |1,n〉, |2,n〉, |3,n〉 as follows

U1=ħδ4ħΩ1'4±ħ[(±Ω1'2+δ2)2+Ω12]122,
(9a)
U2=ħδ4ħΩ1'4ħδhfs2+sgn×ħ[(±Ω1'2+δ2+δhfs)2+Ω22]122,
(9b)
U3=ħδ4±ħΩ1'4+ħδhfs2ħ[(±Ω1'2+δ2)2+Ω12]122sgn×ħ[(±Ω1'2+δ2+δhfs)2+Ω22]122,
(9c)

where Ω'1 = (δ 2 + Ω12)1/2. In Eq. (9), “+” and “-” in “±” or “-”and “+” in “+” represent the case of δ > 0 and δ < 0 respectively, “sgn” is equal to 1 as δ > - δhfs and -1 as δ < -δhfs , which will be the same meaning in all of the following equations. If we choose the small saturation parameter approximation [22

22 . J. Söding , R. Grimm , and Yu. B. Ovchinnikov , “ Gravitational laser trap for atoms with evanescent-wave cooling ,” Opt. Commun. 119 , 652 – 662 ( 1995 ). [CrossRef]

] and the zero-order approximation of Eq. (9), the optical potentials U 1, U 2 and U 3 can be reduced as the same as the expressions of the optical potentials in Refs. [19–21

19 . V. I. Balykin , D. V. Laryushin , M. V. Subbotin , and V. S.L etokhov , “ Increase of the atomic phase density in a hollow laser waveguide ,” JETP Lett. 63 , 802 – 807 ( 1996 ). [CrossRef]

], which can be further simplified as the same as the expressions of the optical potentials in Refs. [3

3 . J. Yin , Y. Zhu , W. Jhe , and Y. Wang , “ Atom guiding and cooling in a dark hollow laser beam ,” Phys. Rev. A 58 , 509 – 513 ( 1998 ). [CrossRef]

,22–27

22 . J. Söding , R. Grimm , and Yu. B. Ovchinnikov , “ Gravitational laser trap for atoms with evanescent-wave cooling ,” Opt. Commun. 119 , 652 – 662 ( 1995 ). [CrossRef]

] by using the small saturation parameter approximation again and taking the first-order approximation.

For the alkali-metal atom, Ωj = (I/2Isat )1/2Γfj1/2, I is the laser intensity, Isat is the saturation intensity of the atom, fj = 2/3 is the relative transition strength from |e〉 to |gj 〉, j=1,2, T is the spontaneous emission rate of the excited state |e〉 [26

26 . X. Xu , Y. Wang , and W. Jhe , “ Theory of atom guidance in a hollow laser beam: dressed-atom approach ,” J. Opt. Soc. Am. B 17 , 1039 – 1050 ( 2000 ). [CrossRef]

]. From Eq. (9), we calculate the optical potentials for a three-level 85Rb atom and obtain the dependences of the optical potentials on the detuning δ/2π when δhfs /2π = 3.04GHz , Γ/2π = 6MHz , Isat = 1.6mW/cm2 and I = 500 mW/cm2, and the results are shown in Fig. 3(a). We find from Fig. 3(a) that there is a pair of non-resonant peaks of the optical potential at the detuning δ/2π = 0 for U 1 and at the detuning δ/2π = -δhfs /2π for U 2. From Eq.(9), we also calculate the dependences of the optical potentials U 1 on the radius r for a = 15 μm, P in=0.5 W and δ/2π = 0.5GHz, 3GHz, 5GHz, as shown in Fig. 3(b), and find that the optical potential is greater than 450 mK as δ/2π < 5GHz, which is high enough to guide cold atoms (~ 120μK) from a standard MOT.

Fig. 3. Dependences of the optical potentials: (a) on the detuning; (b) on the radial position r.

3.2. Spontaneous emissions of a three-level atom

When a three-level atom moves in the light field of the blue-detuned TE01 mode in the HMW, it will experience spontaneous emission and its heating, which will cause some atoms to be escaped from the trap. To obtain the spontaneous emission rates of the three-level atom in the intense laser field, we substitute three dressed-eigenenergies into Eq.(8) respectively and solve them, and then three eigenstates |1,n〉, |2,n〉 and |3,n〉 in the dressed-atomic picture can be given by

i,n=Aig2,n+1+Big2,n+1+Cie,n,
(10)

where i = 1,2,3, the probability amplitudes Ai , Bi and Ci are given by

Ai=ai2(1+ai12+ai22)12,Bi=ai1(1+ai12+ai22)12,Ci=1(1+ai12+ai22)12,
(11)

where

a11=Ω1δ2Ω1'2±[(±Ω1'2+δ2)2+Ω12]12,
a12=Ω2δ2Ω1'2±[(±Ω1'2+δ2)2+Ω12]122δhfs,
a21=Ω1δ2±Ω1'2δhfssgn×[(±Ω1'2+δ2+δhfs)2+Ω22]12,
a22=Ω2δ2±Ω1'2+δhfssgn×[(±Ω1'2+δ2+δhfs)2+Ω22]12,
a31=Ω1δΩ1'δhfs±[(±Ω1'2+δ2)2+Ω12]12+sgn×[(±Ω1'2+δ2+δhfs)2+Ω22]12,
a32=Ω2δΩ1'+δhfs±[(±Ω1'2+δ2)2+Ω12]12+sgn×[(±Ω1'2+δ2+δhfs)2+Ω22]12.
(12)

In consideration of the coupling of the dressed atom with the vacuum modes, the guided atoms will spontaneously emit fluorescent photons, and the corresponding spontaneous emission rates Γij from |j,n〉 to |i,n-1〉 can be given by [26

26 . X. Xu , Y. Wang , and W. Jhe , “ Theory of atom guidance in a hollow laser beam: dressed-atom approach ,” J. Opt. Soc. Am. B 17 , 1039 – 1050 ( 2000 ). [CrossRef]

,28

28 . J. Dalibard and C. Cohen-Tannoudji , “ Dressed-atom approach to atomic motion in laser light: the dipole force revisited ,” J. Opt. Soc. Am. B 2 , 1707 – 1720 ( 1985 ). [CrossRef]

]

Γij=Bi2Cj2Γ1+Ai2Cj2Γ2,
(13)

where Γ1 and Γ2 are the partial spontaneous emission rates given by Γ1 = q 1Γ and Γ2 = q 2Γ, q 1 (q 2) is the relative branching ratio of the spontaneous emission from |e〉 to |g 1〉 (or |g 2〉). For a 85Rb atom, q 1 = 0.74, q 2 = 0.26 [26

26 . X. Xu , Y. Wang , and W. Jhe , “ Theory of atom guidance in a hollow laser beam: dressed-atom approach ,” J. Opt. Soc. Am. B 17 , 1039 – 1050 ( 2000 ). [CrossRef]

], and the dependences of the spontaneous-emission rates on the detuning δ/2π for I = 500mW/cm2 are shown in Fig.4(a). We can see from Fig. 4(a) that there are the maximum spontaneous emission rates at the detuning δ/2π = 0 for Γ11, Γ21, Γ31 and at the detuning δ/2π = -δhfs /2π for Γ12, Γ22, Γ32, which shows a resonant property of the spontaneous emission coming from two resonant effects between |g 1〉 → |e〉 and between |g 2〉 → |e〉, respectively.

Fig. 4. Dependences of the spontaneous emission rates: (a) on the detuning δ/2π ; (b) on the intensity.

Since the dressed-state |1,n〉 contains a small mixture of the excited state [see Eq. (10)], it may spontaneously decay to a lower dressed-state |1, n - 1〉, |2, n - 1〉 or |3, n - 1〉 with the corresponding rate Γi1 (i = 1,2,3), that is,

Γi1=Bi2C12Γ1+Ai2C12Γ2.
(14)

Substituting Eqs. (11) and (12) into Eq. (14), we can obtain the expressions of the spontaneous-emission rates Γ11 , Γ21 and Γ31 . Moreover, under the approximation of small saturation parameters [22

22 . J. Söding , R. Grimm , and Yu. B. Ovchinnikov , “ Gravitational laser trap for atoms with evanescent-wave cooling ,” Opt. Commun. 119 , 652 – 662 ( 1995 ). [CrossRef]

], we can obtain the approximate expressions of Eq. (14), which are the same as the results in Ref. [27

27 . H. Nha and W. Jhe , “ Sisphus cooling on the surface of a hollow-mirror atom trap ,” Phys. Rev. A 56 , 729 – 736 ( 1997 ). [CrossRef]

].

From Eq. (14), we calculate the dependences of the spontaneous emission rates Γ1121, Γ31 on the laser intensity for δ/2π = 3GHz, and the results are shown in Fig. 4(b). We can find from Fig. 4(b) that the spontaneous emission rates Γ11, Γ21 and Γ31 will be increased with the intensity increasing, and have Γ11 > Γ21 > Γ31.

4. Guiding efficiency and loss mechanisms

4.1. Straight guide of cold atoms

In the energy conservative limit, we evaluate the guiding efficiency of cold atoms in the blue-detuned TE01 mode in the HMW by calculating the atom flux probability [9

9 . M. J. Renn , A. A. Zozulya , E. A. Donley , E. A. Cornell , and D. Z. Anderson , “ Optical-dipole-force fiber guiding and heating of atoms ,” Phys. Rev. A 55 , 3684 – 3693 ( 1997 ). [CrossRef]

]. Let us make several assumptions to simplify the atom-flux calculation. First, we assume that the cold atoms at the HMW inlet have a uniform spatial distribution and a Maxwell-Boltzmann velocity distribution. Second, cold atoms are regarded as classical particles in the course of guiding. Third, we neglect the intensity decaying of the TE01 doughnut mode along the guiding axis, which is valid for the straight HMW with a length of several 10-cm. In addition, we think that the motion of the guided cold atoms in the TE01 mode satisfies the adiabatic approximate condition and we choose |1,n〉 as the guided state.

According to the first assumption mentioned above, atoms at the input cross section of the HMW have a uniform position distribution 1/V in the coordinates (x, y,z) and a velocity distribution

f(vx,vy,vz)=(M2πkBT)32exp[M2kBT(vx2+vy2+vz2)],
(15)

where M is the atomic mass and T is the temperature. The input flux can then be derived by [9

9 . M. J. Renn , A. A. Zozulya , E. A. Donley , E. A. Cornell , and D. Z. Anderson , “ Optical-dipole-force fiber guiding and heating of atoms ,” Phys. Rev. A 55 , 3684 – 3693 ( 1997 ). [CrossRef]

]

Ji=∫∫x2+y2<r021Vdxdy∫∫∫∫vz>0vzf(vx,vy,vz)dvxdvydvz=(π2)12(kBTM)12r02V,
(16)

where r 0 is the radial position of the maximum intensity of the TE01 mode. If the guided cold atoms do not hit the metal core of the HMW, they are not lost from the guide, and the atoms entering the TE01 mode in the HMW will emerge at the outlet of the HMW. Thus, in the absence of an optical guiding potential, the atoms must follow a ballistic trajectory through the hollow region, and the guiding efficiency will be very small when the length of the HMW is far larger than the radius of the hollow region. In the presence of the optical field, the transverse atomic motion is bound by the optical potential and the guiding efficiency can be increased dramatically. The output flux can be calculated by the following integration in the cylindrically symmetric coordinates (r, ϕ, z) in the straight HMW

J0(δ,Pin)=∫∫r<r01Vrdrdϕ∫∫∫S,vz>0vzf(vx,vϕ,vz)dvrdvϕdvz,
(17)

where the motion of the guided atoms in the velocity region S must satisfy the energy conservation

S={r,vr,vϕ:12Mvr2+12Mvϕ2+U(r)<12Mr2r02vϕ2+U(r0)},
(18)

where U(r) [or U(r 0)] is the optical potential given by Eq.(9a) at the radial position r = [x 2 + y 2]1/2 (or r = r 0). In Eq. (18), since the optical potential is cylindrically symmetric, the angular momentum is conserved and can be expressed as vϕr = const, where vϕ is the azimuthal component of the atom’s velocity. In order to calculate the integration of Eq. (17), we make the following transformations

r=ρr0,vr=ur(2kBTM)12,vϕ=uϕ(2kBTM)12,vz=uz(2kBTM)12.
(19)

Using Eq. (19), the integration of Eq. (17) becomes

J0(δ,Pin)=r02V(2kBTM)1201ρ{∫∫S'(ρ)exp[(ur2+uϕ2)]durduϕ},
(20)

where

S'(ρ)={ρ,ur,uϕ:ur2+kBT(1ρ2)uϕ2<U(r0)U(r0ρ)}.
(21)

Then the guiding efficiency can be defined by η = J 0/ Ji , and given by

η=π201ρ{∫∫S'(ρ)exp[(ur2+uϕ2)]durduϕ}.
(22)
Fig. 5. Dependences of the guiding efficiency on the input laser power: (a) for the straight HMW; (b) for the bent HMW.

From Eq.(22), we calculate the dependence of the guiding efficiency of the straight HMW guiding (a = 15 μm) for cold 85Rb atoms in |1,n〉 on the input power of the coupling laser with different detuning, and the results are shown in Fig. 5(a). We know from Fig. 5(a) that the guiding efficiency is increased with the increasing of the input laser power and decreased with the increasing of the laser detuning. When δ/2π - 0.5GHz (3 GHz) and P in= 0.1 mW, the guiding efficiency can reach 89% (78%), while the input laser power P in is increased to 0.5W, the guiding efficiency can be increased to 99% (98%).

4.2. Bent guide of cold atoms

When the HMW is bent, some hotter atoms, with a kinetic energy larger than the maximum transverse guiding potential, will be lost from the guiding channel. For the bent HMW with a curvature radius of R ≤ 2 cm, the intensity decaying of the TE01 doughnut mode along the guiding axis should be considered. If the HMW is bent in the (y, z) plane with a curvature radius of R, we introduce a curvilinear coordinates (x’, y’, z’) instead of the initial coordinates (x, y, z), with the axis z’ following the bent HMW [9

9 . M. J. Renn , A. A. Zozulya , E. A. Donley , E. A. Cornell , and D. Z. Anderson , “ Optical-dipole-force fiber guiding and heating of atoms ,” Phys. Rev. A 55 , 3684 – 3693 ( 1997 ). [CrossRef]

]

x=x',
(23a)
y=R1cos(z'R)+y'cos(z'R),
(23b)
z=(Ry')sin(z'R).
(23c)

ex=ex',
(24a)
ey=ey'cos(z'R)+ez'sin(z'R)
(24b)
ez=ey'sin(z'R)+ez'cos(z'R).
(24c)

From Eqs. (23) and (24), the transformation of the acceleration of the atomic motion between such two coordinate systems can be expressed as

a=ax'ex'+[ay'+vz'2R(1y'R)]ey'+[az'(1y'R)2vy'vz'R]ez'.
(25)

Since R >> r 0, the region of the coordinates and velocities of the guided atoms can be derived by integrating Eq. (25)

12Mvx'2+12Mvy'2+Mvz'2R(y'+r0)+U(x',y',z')U(r0,z').
(26)

This shows that the angular momentum is relative to the curvature center of the bent HMW. Eq. (26) presents the energy conservation when the atoms move inside the TE01 mode in the HMW, and shows that the motion of the cold atoms in the bent HMW is analogous to that in a gravity field with the acceleration constant vz'2 /R . For simplicity [9

9 . M. J. Renn , A. A. Zozulya , E. A. Donley , E. A. Cornell , and D. Z. Anderson , “ Optical-dipole-force fiber guiding and heating of atoms ,” Phys. Rev. A 55 , 3684 – 3693 ( 1997 ). [CrossRef]

], we assume that the cross section of the HMW is a square -r 0 < x' < r 0, - r 0 < y' < r 0, and the optical potential can be rewritten as

Ux'y'z'={0,x'<r0andy'<r0,Ur0z',x'=r0ory'=r0,
(27)

If we assume that the velocity components in x' and y' axis are separate, the trap condition can be expressed as

12Mvx'2Ur0z'
(28a)
12Mvy'2+Mvz'2R(y'+r0)Ur0z'.
(28b)

Therefore, the guiding efficiency of the cold atoms in the bent HMW with a square cross section can be given by

η=(erf{[U(r0,z')kBT]12})212erf{[Ur0z'kBT]12}
×11exp[Ur0z'kBTR2r0(1+l)][R2r0(1+l)1]12×erfi({Ur0z'kBT[R2r0(1+l)1]}12)dl,
(29)

where is the error function, and erfi(x) = erf(ix )/i is the imaginary error function. In Eq.(29), the first term of the right-hand side of the equation is the guiding efficiency when R → ∞ (that is, the straightly guiding efficiency of cold atoms) and the second term is the effect of the curvature to the guiding efficiency. For the TE01 mode in the bending HMW, I 0(z ')=I 0(0)×exp(-2α01b z '), and U(r 0,z ') (=U 1I 0(z ')⌋ can be written as U(r 0,0)f(z '), where U 1 is given by Eq. (9a) and U(r 0,0) is the maximum optical potential at z ' =0 . If the length of the HMW is 30cm , we can replace U(r 0,z ') with U(r 0, z ')z'=0.3 to estimate the guiding efficiency using Eq. (29). From Eq. (29), we calculate the dependence of the guiding efficiency of the bent HMW for cold 85Rb atoms in |1, n〉 on the input laser power as a = 15 μm, δ/2π = 3 GHz and different curvature radius R, and the results are shown in Fig. 5(b). We find from Fig. 5(b) that the guiding efficiency will be increased with the increasing of the input laser power and decreased with the decreasing of the curvature radius R. If the curvature radius R is larger than 2cm, there is almost no bent effect on the guiding efficiency. This is because the optical propagation loss of the TE01 mode in the HMW can almost be neglected as R ≥ 2cm. For a smaller R (such as R= 1cm, 0.8cm), the guiding efficiency can arrive at the same value for both straight and bent HMW when the input laser power is increased to an enough large value.

4.3. Atomic loss mechanisms and their loss rates

4.3.1 Atomic loss from background thermal collisions

For the guided Rb atoms, we assume that the collision loss from the non-rubidium atoms can be negligible, the atomic collision rate from the background thermal Rb atoms can be estimated by [20

20 . J. Yin , Y. Zhu , and Y. Wang , “ Evanescent light-wave atomic funnel: A tanden hollow-fiber, hollow-beam approach ,” Phys. Rev. A 57 , 1957 – 1966 ( 1998 ). [CrossRef]

]

γac=1τac100nσRb(3kBTtherM),
(30)

where n = 0.1333×10-3 p/(kBTther ) is the density of the background Rb atoms in the vacuum chamber (cm-3). Here p is the pressure (Torr) in the vacuum chamber, M is the Rb atomic mass (kg), T ther is the temperature of the background Rb vapor (K), and σRb is the collision cross section of the Rb atoms (cm2). If taking p=10-9 Torr, σRb ~10-13cm2 and T ther =300K, we obtain γac = 9.55% from Eq. (30). In this case, when a cold atomic beam with an average longitudinal velocity of 14m/s [29

29 . Z. T. Lu , K. L. Corwin , M. J. Renn , M. H. Anderson , E. A. Cornell , and C. E. Wieman , “ Low-velocity intense source of atoms from a magneto-optical trap ,” Phys. Rev. Lett. 77 , 3331 – 3334 ( 1996 ). [CrossRef] [PubMed]

] is loaded into our HMW guiding channel with a length L of 10–30 cm, the corresponding collision loss is 0.07%–0.21%. If taking p=10-8 Torr, the corresponding collision loss is about 0.7%–2.1%. So the atomic loss from the background thermal collisions can be neglected as p less than 10-8 Torr.

4.3.2. Atomic loss from spontaneous emission of the guided atoms

For the guided atoms with a temperature of 120μK , the mean intensity Ī within the mean atomic penetrating depth rAPD can be calculated by Ī = |∫rAPD 0 I(r) dr/rAPD . When P in= 0.5 W and δ/2π = 3GHz, the penetrating depth rAPD is 1.96×10-2μm, and the mean intensity Ī is ~ 881.1mW/cm2, and then we estimate that the mean spontaneous emission rate Γ¯ 1 = Γ¯ 11 + Γ¯ 21 + Γ¯ 31 ≈ 1.1×103 s-1. In this case, when a cold atomic beam with an average longitudinal velocity of 14m/s [29

29 . Z. T. Lu , K. L. Corwin , M. J. Renn , M. H. Anderson , E. A. Cornell , and C. E. Wieman , “ Low-velocity intense source of atoms from a magneto-optical trap ,” Phys. Rev. Lett. 77 , 3331 – 3334 ( 1996 ). [CrossRef] [PubMed]

] is loaded into our HMW guiding channel with a length of 10 – 30 cm, the total mean spontaneous emission is 7.86 – 23.5 times, which corresponds to a spontaneous-emission heating of 1.45 – 4.36 μK. This shows that the spontaneous-emission heating is very small, even can be neglected as compared to the temperature of the guided cold atoms (120μK) in the HMW.

4.3.3. Atomic loss from non-adiabatic transition of the guided atoms

In the blue-detuned TE01 mode in the HMW, it can see from Eq.(9) that the atoms in the states |1,n〉 and |2,n〉 are pushed to the minimum intensity position and can be trapped and guided by the TE01 doughnut mode in the HMW, whereas the atoms in the state |3,n〉 are attracted to the maximum intensity position and may be lost due to the huge spontaneous emission rate at the maximum intensity position. The course of the atoms from the guided state |1,n〉 (or |2,n〉) to the non-guided state |3,n〉 is defined as the non-adiabatic transition, which can be described by the spontaneous emission rates Γ31 and Γ32. When P in= 0.5 W and δ/2π = 0.5GHz(3GHz), the mean non-adiabatic transition rate is 5.76 s-1 (0.2s-1). In this case, when a cold atomic beam with an average longitudinal velocity of 14m/s [29

29 . Z. T. Lu , K. L. Corwin , M. J. Renn , M. H. Anderson , E. A. Cornell , and C. E. Wieman , “ Low-velocity intense source of atoms from a magneto-optical trap ,” Phys. Rev. Lett. 77 , 3331 – 3334 ( 1996 ). [CrossRef] [PubMed]

] is loaded into our HMW guiding channel with a length of 10 – 30 cm, the total mean non-adiabatic transition is 0.04–0.12 (0.0014–0.0042) times. It is clear that when δ/2π = 3GHz, the total mean non-adiabatic transition is so small that can be neglected in the atomic guiding.

5. Potential applications

Since the blue-detuned TE01 mode in the HMW has a doughnut-like intensity profile, and it cannot only be used to realize straight guiding of cold atoms (or molecules), but also to realize bent guiding of cold atoms (or molecules), our proposed guiding scheme has some new potential applications in the fields of atom and molecule optics. Such as:

  1. Computer-controlled atom lithography: In order to fabricate two dimensional (2D) submicron-scale structures, the precise control of a cold atomic beam is required in the atom-optical deposition or lithography. In recent years, the guiding technique of the cold atomic beam using a HOF with a hollow radius of a few 1 - μm escorted by the evanescent-light wave was proposed to realize a novel atom-optical lithography [30

    30 . H. Ito , K. Sakaki , M. Ohtsu , and W. Jhe , “ Evanescent-light guiding of atoms throught hollow optical fiber for optically controlled atomic deposition ,” Appl. Phys. Lett. 70 2496 – 2498 ( 1997 ). [CrossRef]

    ]. Due to a small hollow radius of such a HOF, it is difficult to obtain a higher vacuum in the hollow region of the HOF, and then it is difficult to realize an atomic guiding with a higher efficiency. However, the hollow radius of our HMW can reach to a few 10 - μm, and it is easy to obtain a higher vacuum in the hollow radius of the HMW, which can also be used to high-effectively guide cold atoms and then to realize a computer-controlled atom lithography with an arbitrary pattern, even to form an atom-fiber gyroscope.
  2. Generation of dark hollow beam: From Fresnel and Fraunhofer diffraction theory, we calculate the near- and far-field distributions of the TE01 mode output beam at the outlet of the HMW, and find that the near field intensity distribution of the TE01 mode output beam from the HMW is a focused hollow beam and the far field intensity distribution of the TE01 mode output beam is a divergent hollow beam, which can be used to form a novel atomic lens and a simple atomic funnel, respectively. If a micro-collimation technique [31

    31 . J. Yin , H. Noh , K. Lee , K. Kim , Y. Wang , and W. Jhe , “ Generation of a dark hollow beam by a small hollow fiber ,” Opt. Commun. 138 , 287 – 292 ( 1997 ). [CrossRef]

    ] is used to collimate the TE01 mode output beam, a collimated-well hollow laser beam will be generated from the HMW.
  3. Realization of single mode atomic waveguide: We can see from Fig. 3(b) that when P in= 0.5W and δ/2π = 3 GHz, the guiding potential for cold 85Rb atoms is higher than 465 mK, which is far higher than the temperature (~ 120μK) of the guided cold 85Rb atoms loaded from the Standard MOT. In this case, transverse motion region of the guided cold atoms is smaller than 19.6 nm, which is about equal to the mean de Broglie wavelength λdB = [2πħ 2/(mkT)]1/2 ≈ 17.3nm of the guided cold atoms. So our guiding scheme can also be used to realize a single-mode atomic waveguide in the blue-detuned TE01 mode in the HMW.
  4. Intensity-gradient cooling of the guided atoms: Sisyphus cooling of atoms in the standing-wave field or the evanescent-wave one, originating from the intensity gradient of the light field, is usually called “intensity-gradient cooling” (IGC) [1

    1 . J. Yin , W. Gao , and Y. Zhu , “ Generation of dark hollow beams and their applications ,” Prog. Opt. 45 , 119 – 204 ( 2003 ). [CrossRef]

    ]. Neutral atoms moving in these light fields with a high intensity-gradient will be cooled down to near the recoil temperature. Since the average intensity gradient (I max(r 0)/r 0 =1.9×1011mW/cm3) of the TE01 mode in the HMW, as a = 15μm and P in = 0.5W, is far greater than that (2.98×1010mW/cm3) of the LP01 mode in the HOF [2

    2 . J. Yin , Y. Zhu , W. Wang , Y. Wang , and W. Jhe , “ Optical potential for atom guidance in a dark hollow laser beam ,” J. Opt. Soc. Am. B 15 , 25 – 33 ( 1998 ). [CrossRef]

    ] with a hollow radius a = 3.5μm and the same laser power, and also far greater than that (1.61×109mW/cm3) of the evanescent-wave surface trap with the same power [23

    23 . Yu.B. Ovchinnikov , I. Manek , and R. Grimm , “ Surface trap for Cs atoms based on evanescent-wave cooling ,” Phys. Rev. Lett. 79 , 2225 – 2228 ( 1997 ). [CrossRef]

    ], the blue-detuned TE01 mode in the HMW can be used to cool the guided atoms to near the recoil temperature by adding a weak red-detuned repumping beam in the HMW [21

    21 . J. Yin , Y. Zhu , and Y. Wang , “ Gravito-optical trap for cold atoms with doughnut-hollow-beam cooling ,” Phys. Lett. A 248 , 309 – 318 ( 1998 ). [CrossRef]

    ].
  5. Generation of a continuous cold molecular beam: From the above analysis, our HMW guiding scheme can be used to realize the bent guiding of cold atoms. Also, our guiding scheme can be used to realize the straight and bent guiding of cold molecules according to ac Stark effect. Since the velocity and flux of the guided cold molecular beam can be controlled by adjusting the power and detuning of the coupling laser and the curvature radius of the HMW, a blue-detuned TE01 mode in the bent HMW with a curvature radius of R, as an energy low-pass filter, can be used to realize the generation of a continuous-wave (CW) cold molecular beam, which is similar to the scheme of bent electrostatic guiding for cold polar molecules [32

    32 . T. Junglen , T. Rieger , S. A. Rangwala , P. W. H. Pinkse , and G. Rempe , “ Slow ammonia molecules in an electrostatic quadrupole guide ,” Eur. Phys. J. D 31 , 365 – 373 ( 2004 ). [CrossRef]

    ]. It is an important method to generate a CW cold molecular beam for those molecules without an electric or magnetic dipole moment, such as I2 molecules and so on.

6. Conclusion

In this paper, we have proposed a new scheme to guide cold atoms (or molecules) using a blue-detuned TE01 mode in the HMW, and calculated the electric field distribution of the TE01 mode in the HMW and its optical potential for 85Rb atoms, and estimated the spontaneous-emission rate of the guided atoms and atomic loss rates as well as the guiding efficiency, and found that the optical potential of the blue-detuned TE01 mode for 85Rb atoms is high enough to guide cold atoms from a standard MOT. For the given optimal parameters, such as a = 15 μm, P in= 0.5W, δ/2π = 3 GHz and L = 10 – 30cm, the straight guiding efficiency of cold atoms can reach 98% , and the bending of the HMW with a curvature radius of R > 2cm will only result in a slight reduction of the guiding efficiency. Our study also shows that: (1) the spontaneous-emission induced heating is about 1.45–4.36 μK; (2) The total mean non-adiabatic transition is about 0.0014–0.0042 times; (3) When p=10-9 Torr, the atomic loss from the background thermal collisions is about 0.07% – 0.21% ; While p=10-8 Torr, the corresponding collision loss is about 0.7% – 2.1%. It is clear that these atomic losses are very small, even can be neglected.

In final, we have briefly discussed some potential applications of our proposed guiding scheme and found that it has some new and important applications in atom and molecule optics, such as, computer-controlled atom lithography with an arbitrary pattern, the generation of dark hollow beam, realization of single-mode atomic waveguide, intensity-gradient cooling of the guided atoms, production of a CW cold molecular beam, even formation of an atom-fiber gyroscope, and so on.

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant Nos.10174050, 10374029 and 10434060, Shanghai Priority Academic Discipline and the 211 Foundation of the Educational Ministry of China.

References and links

1 .

J. Yin , W. Gao , and Y. Zhu , “ Generation of dark hollow beams and their applications ,” Prog. Opt. 45 , 119 – 204 ( 2003 ). [CrossRef]

2 .

J. Yin , Y. Zhu , W. Wang , Y. Wang , and W. Jhe , “ Optical potential for atom guidance in a dark hollow laser beam ,” J. Opt. Soc. Am. B 15 , 25 – 33 ( 1998 ). [CrossRef]

3 .

J. Yin , Y. Zhu , W. Jhe , and Y. Wang , “ Atom guiding and cooling in a dark hollow laser beam ,” Phys. Rev. A 58 , 509 – 513 ( 1998 ). [CrossRef]

4 .

X. Xu , K. Kim , W. Jhe , and N. Kwon , “ Efficient optical guiding of trapped cold atoms by a hollow laser beam ,” Phys. Rev. A 63 , 063401 ( 2001 ). [CrossRef]

5 .

L. Pruvost , D. Marescaux , O. Houde , and H. T. Duong , “ Guiding and cooling of cold atoms in dipole guide ,” Opt. Commun. 166 , 199 – 209 ( 1999 ). [CrossRef]

6 .

B. T. Wolschrijn , R. A. Cornelussen , R. J. C. Spreeuw , and H. B. van Linden van den Heuvell , “ Guiding of cold atoms by a red-detuned laser beam of moderate power ,” New J. Phys. 4 , 69.1 – 69.10 ( 2002 ). [CrossRef]

7 .

M. A. Ol’Shanii , Yu. B. Ovchinnikov , and V. S. Letkhov , “ Laser guiding of atoms in a hollow optical fiber ,” Opt. Commun. 98 , 77 – 79 ( 1993 ). [CrossRef]

8 .

M. J. Renn , D. Montgomery , O. Vdovin , D. Z. Anderson , C. E. Wieman , and E. A. Cornell , “ Laser-guided atoms in hollow-core optical fibers ,” Phys. Rev. Lett. 75 , 3253 – 3256 ( 1995 ). [CrossRef] [PubMed]

9 .

M. J. Renn , A. A. Zozulya , E. A. Donley , E. A. Cornell , and D. Z. Anderson , “ Optical-dipole-force fiber guiding and heating of atoms ,” Phys. Rev. A 55 , 3684 – 3693 ( 1997 ). [CrossRef]

10 .

M. J. Renn , E. A. Donley , E. A. Cornell , C. E. Wieman , and D. Z. Anderson , “ Evanescent-wave guiding of atoms in hollow optical fibers ,” Phys. Rev. A 53 , R648 – R651 ( 1996 ). [CrossRef] [PubMed]

11 .

H. Ito , T. Nakata , K. Sakaki , M. Ohtsu , K. I. Lee , and W. Jhe , “ Laser spectroscopy of atoms guiding by evanescent waves in micron-sided hollow optical fibers ,” Phys. Rev. Lett. 76 , 4500 – 4503 ( 1996 ). [CrossRef] [PubMed]

12 .

H. Ito , K. Sakaki , W. Jhe , and M. Ohtsu , “ Evanescent-light induced atom-guidance using a hollow optical fiber with light coupled sideways ,” Opt. Commun. 141 , 43 – 47 ( 1997 ). [CrossRef]

13 .

E. A. J. Marcatili and R. A. Schmeltzer , “ Hollow metallic and dielectric waveguides for long distance optical transition and lasers ,” Bell Syst. Tech. J. 43 , 1783 – 1809 ( 1964 ).

14 .

E. Garmire , T. McMahon , and M. Bass , “ Propagation of infrared light in flexible hollow waveguide ,” Appl. Opt. 15 , 145 – 150 ( 1976 ). [CrossRef] [PubMed]

15 .

Y. Xia and J. Yin , “ Generation of a focused hollow beam by an 2 Pi-phase plates and its applications in atom or molecule optics ,” J. Opt. Soc. Am. B 22 , 529 – 536 ( 2005 ). [CrossRef]

16 .

R. L. Abrams and A. N. Chester , “ Resonator theory for hollow waveguide lasers ,” Appl. Opt. 13 , 2117 – 2125 ( 1974 ). [CrossRef] [PubMed]

17 .

M. Saito , S. Sato , and M. Miyagi , “ Loss characteristics of infrared hollow waveguides in multimode transmission ,” J. Opt. Soc. Am. A 10 , 277 – 282 ( 1993 ). [CrossRef]

18 .

M. Miyagi and S. Kawakami , “ Design theory of dielectric-coated circular metallic waveguide for infrared transition ,” IEEE J. Lightwave Technol. 2 , 116 – 126 ( 1984 ). [CrossRef]

19 .

V. I. Balykin , D. V. Laryushin , M. V. Subbotin , and V. S.L etokhov , “ Increase of the atomic phase density in a hollow laser waveguide ,” JETP Lett. 63 , 802 – 807 ( 1996 ). [CrossRef]

20 .

J. Yin , Y. Zhu , and Y. Wang , “ Evanescent light-wave atomic funnel: A tanden hollow-fiber, hollow-beam approach ,” Phys. Rev. A 57 , 1957 – 1966 ( 1998 ). [CrossRef]

21 .

J. Yin , Y. Zhu , and Y. Wang , “ Gravito-optical trap for cold atoms with doughnut-hollow-beam cooling ,” Phys. Lett. A 248 , 309 – 318 ( 1998 ). [CrossRef]

22 .

J. Söding , R. Grimm , and Yu. B. Ovchinnikov , “ Gravitational laser trap for atoms with evanescent-wave cooling ,” Opt. Commun. 119 , 652 – 662 ( 1995 ). [CrossRef]

23 .

Yu.B. Ovchinnikov , I. Manek , and R. Grimm , “ Surface trap for Cs atoms based on evanescent-wave cooling ,” Phys. Rev. Lett. 79 , 2225 – 2228 ( 1997 ). [CrossRef]

24 .

X. Xu , V. G. Minogin , K. Lee , Y. Wang , and W. Jhe , “ Guiding cold atoms in a hollow laser beam ,” Phys. Rev. A 60 , 4796 – 4804 ( 1999 ). [CrossRef]

25 .

J. Yin and Y. Zhu , “ Dark-hollow-beam gravito-optical atom trap above an apex of a hollow optical fibre ,” Opt. Commun. 152 , 421 – 428 ( 1998 ). [CrossRef]

26 .

X. Xu , Y. Wang , and W. Jhe , “ Theory of atom guidance in a hollow laser beam: dressed-atom approach ,” J. Opt. Soc. Am. B 17 , 1039 – 1050 ( 2000 ). [CrossRef]

27 .

H. Nha and W. Jhe , “ Sisphus cooling on the surface of a hollow-mirror atom trap ,” Phys. Rev. A 56 , 729 – 736 ( 1997 ). [CrossRef]

28 .

J. Dalibard and C. Cohen-Tannoudji , “ Dressed-atom approach to atomic motion in laser light: the dipole force revisited ,” J. Opt. Soc. Am. B 2 , 1707 – 1720 ( 1985 ). [CrossRef]

29 .

Z. T. Lu , K. L. Corwin , M. J. Renn , M. H. Anderson , E. A. Cornell , and C. E. Wieman , “ Low-velocity intense source of atoms from a magneto-optical trap ,” Phys. Rev. Lett. 77 , 3331 – 3334 ( 1996 ). [CrossRef] [PubMed]

30 .

H. Ito , K. Sakaki , M. Ohtsu , and W. Jhe , “ Evanescent-light guiding of atoms throught hollow optical fiber for optically controlled atomic deposition ,” Appl. Phys. Lett. 70 2496 – 2498 ( 1997 ). [CrossRef]

31 .

J. Yin , H. Noh , K. Lee , K. Kim , Y. Wang , and W. Jhe , “ Generation of a dark hollow beam by a small hollow fiber ,” Opt. Commun. 138 , 287 – 292 ( 1997 ). [CrossRef]

32 .

T. Junglen , T. Rieger , S. A. Rangwala , P. W. H. Pinkse , and G. Rempe , “ Slow ammonia molecules in an electrostatic quadrupole guide ,” Eur. Phys. J. D 31 , 365 – 373 ( 2004 ). [CrossRef]

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.7010) Lasers and laser optics : Laser trapping

ToC Category:
Research Papers

History
Original Manuscript: July 22, 2005
Revised Manuscript: September 30, 2005
Published: October 17, 2005

Citation
Zhengling Wang, Meng Dai, and Jianping Yin, "Atomic (or molecular) guiding using a blue-detuned doughnut mode in a hollow metallic waveguide," Opt. Express 13, 8406-8423 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-21-8406


Sort:  Journal  |  Reset  

References

  1. J. Yin, W. Gao, and Y. Zhu, �??Generation of dark hollow beams and their applications,�?? Prog. Opt. 45, 119-204 (2003). [CrossRef]
  2. J. Yin, Y. Zhu, W. Wang, Y. Wang, and W. Jhe, �??Optical potential for atom guidance in a dark hollow laser beam,�?? J. Opt. Soc. Am. B 15, 25-33 (1998). [CrossRef]
  3. . J. Yin, Y. Zhu, W. Jhe, and Y. Wang, �??Atom guiding and cooling in a dark hollow laser beam,�?? Phys. Rev. A 58, 509-513 (1998). [CrossRef]
  4. X. Xu, K. Kim, W. Jhe, N. Kwon, �??Efficient optical guiding of trapped cold atoms by a hollow laser beam,�?? Phys. Rev. A 63, 063401 (2001). [CrossRef]
  5. L. Pruvost, D. Marescaux, O. Houde, and H. T. Duong, �?? Guiding and cooling of cold atoms in dipole guide,�?? Opt. Commun. 166, 199-209 (1999). [CrossRef]
  6. B. T. Wolschrijn, R. A. Cornelussen, R. J. C. Spreeuw, and H. B. van Linden van den Heuvell, �??Guiding of cold atoms by a red-detuned laser beam of moderate power,�?? New J. Phys. 4, 69.1-69.10 (2002). [CrossRef]
  7. M. A. Ol�??Shanii, Yu. B. Ovchinnikov, and V. S. Letkhov, �??Laser guiding of atoms in a hollow optical fiber,�?? Opt. Commun. 98, 77-79 (1993). [CrossRef]
  8. M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, �??Laser-guided atoms in hollow-core optical fibers,�?? Phys. Rev. Lett. 75, 3253-3256 (1995). [CrossRef] [PubMed]
  9. M. J. Renn, A. A. Zozulya, E. A. Donley, E. A. Cornell, and D. Z. Anderson, �??Optical-dipole-force fiber guiding and heating of atoms,�?? Phys. Rev. A 55, 3684-3693 (1997). [CrossRef]
  10. M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, �??Evanescent-wave guiding of atoms in hollow optical fibers,�?? Phys. Rev. A 53, R648-R651 (1996). [CrossRef] [PubMed]
  11. H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, �??Laser spectroscopy of atoms guiding by evanescent waves in micron-sided hollow optical fibers,�?? Phys. Rev. Lett. 76, 4500-4503 (1996). [CrossRef] [PubMed]
  12. H. Ito, K. Sakaki, W. Jhe, and M. Ohtsu, �??Evanescent-light induced atom-guidance using a hollow optical fiber with light coupled sideways,�?? Opt. Commun. 141, 43-47 (1997). [CrossRef]
  13. E. A. J. Marcatili, and R. A. Schmeltzer, �??Hollow metallic and dielectric waveguides for long distance optical transition and lasers,�?? Bell Syst. Tech. J. 43, 1783-1809 (1964).
  14. E. Garmire, T. McMahon, and M. Bass, �??Propagation of infrared light in flexible hollow waveguide,�?? Appl. Opt. 15, 145-150 (1976). [CrossRef] [PubMed]
  15. Y. Xia, and J. Yin, �??Generation of a focused hollow beam by an 2 Pi-phase plates and its applications in atom or molecule optics,�??J. Opt. Soc. Am. B 22, 529-536 (2005). [CrossRef]
  16. R. L. Abrams, and A. N. Chester, �??Resonator theory for hollow waveguide lasers,�?? Appl. Opt. 13, 2117-2125 (1974). [CrossRef] [PubMed]
  17. M. Saito, S. Sato, and M. Miyagi, �??Loss characteristics of infrared hollow waveguides in multimode transmission,�?? J. Opt. Soc. Am. A 10, 277-282 (1993). [CrossRef]
  18. M. Miyagi, and S. Kawakami, �??Design theory of dielectric-coated circular metallic waveguide for infrared transition,�?? IEEE J. Lightwave Technol. 2, 116-126 (1984). [CrossRef]
  19. V. I. Balykin, D. V. Laryushin, M. V. Subbotin, and V. S.L etokhov, �??Increase of the atomic phase density in a hollow laser waveguide,�?? JETP Lett. 63, 802-807 (1996). [CrossRef]
  20. J. Yin, Y. Zhu, and Y. Wang, �??Evanescent light�??wave atomic funnel: A tanden hollow-fiber, hollow-beam approach,�?? Phys. Rev. A 57, 1957-1966 (1998). [CrossRef]
  21. J. Yin, Y.Zhu, and Y. Wang, �??Gravito-optical trap for cold atoms with doughnut-hollow-beam cooling,�?? Phys. Lett. A 248, 309-318 (1998). [CrossRef]
  22. J. Söding, R. Grimm, and Yu. B. Ovchinnikov, �??Gravitational laser trap for atoms with evanescent-wave cooling,�?? Opt. Commun. 119, 652-662 (1995). [CrossRef]
  23. Yu.B. Ovchinnikov, I. Manek, and R. Grimm, �??Surface trap for Cs atoms based on evanescent-wave cooling,�?? Phys. Rev. Lett.79, 2225-2228 (1997). [CrossRef]
  24. X. Xu, V. G. Minogin, K. Lee, Y. Wang, and W. Jhe, �??Guiding cold atoms in a hollow laser beam,�?? Phys. Rev. A 60, 4796-4804 (1999). [CrossRef]
  25. J. Yin, and Y. Zhu, �??Dark-hollow-beam gravito-optical atom trap above an apex of a hollow optical fibre,�?? Opt. Commun. 152, 421-428 (1998). [CrossRef]
  26. X. Xu, Y. Wang, and W. Jhe, �??Theory of atom guidance in a hollow laser beam: dressed-atom approach,�?? J. Opt. Soc. Am. B 17, 1039-1050 (2000). [CrossRef]
  27. H. Nha, and W. Jhe, �??Sisphus cooling on the surface of a hollow-mirror atom trap,�?? Phys. Rev. A 56, 729-736 (1997). [CrossRef]
  28. J. Dalibard, and C. Cohen-Tannoudji, �??Dressed-atom approach to atomic motion in laser light: the dipole force revisited,�?? J. Opt. Soc. Am. B 2, 1707-1720 (1985). [CrossRef]
  29. Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, �??Low-velocity intense source of atoms from a magneto-optical trap,�?? Phys. Rev. Lett. 77, 3331-3334 (1996). [CrossRef] [PubMed]
  30. H. Ito, K. Sakaki, M. Ohtsu, and W. Jhe, �??Evanescent-light guiding of atoms throught hollow optical fiber for optically controlled atomic deposition,�?? Appl. Phys. Lett. 70 2496-2498 (1997). [CrossRef]
  31. J. Yin, H. Noh, K. Lee, K. Kim, Y. Wang, and W. Jhe, �??Generation of a dark hollow beam by a small hollow fiber,�?? Opt. Commun. 138, 287-292 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited