OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 25 — Dec. 12, 2005
  • pp: 10055–10060
« Show journal navigation

Achromatic four-quadrant phase mask (FQPM) coronagraphy using natural beam splitter phase shifts

E. E. Bloemhof  »View Author Affiliations


Optics Express, Vol. 13, Issue 25, pp. 10055-10060 (2005)
http://dx.doi.org/10.1364/OPEX.13.010055


View Full Text Article

Acrobat PDF (132 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The four-quadrant phase mask (FQPM) is an exciting new approach to coronagraphy, a classic astronomical technique for detecting faint companions very close to bright stars. Starlight rejection is potentially very high, and inner working distances are substantially smaller than those achieved with classical Lyot coronagraphy. The key component of the original FQPM scheme is a transparent mask divided into quadrants delivering relative phase shifts alternately 0/π/0/π, inserted in an intermediate focal plane of the telescope. Monochromatic masks of this kind have been successfully demonstrated in laboratory and telescope tests. Fabrication of masks with achromatic π phase shifts is challenging but of great interest for optimum astronomical sensitivity. In this paper I present a novel concept for achromatic FQPM operation that utilizes intrinsic phase relationships between transmitted and reflected beams in a dielectric beam splitter.

© 2005 Optical Society of America

1. Introduction

One of the most significant recent developments in astronomy has been the discovery of “extrasolar” planets, now numbering well over 100, orbiting stars other than the sun [1

1 . J. J. Lissauer , “ Extrasolar planets ,” Nature 419 , 355 ( 2002 ). [CrossRef] [PubMed]

]; their surprising abundance has inspired planned searches for extraterrestrial life. Developing the instrumentation needed for the eventual direct imaging of planets is a very active field of research, and the requirements are stringent. One of the promising technologies is coronagraphy, for which a number of improvements are being devised and proven, at relatively modest initial performance levels, in current laboratory and telescope testbeds.

2. Lyot and four-quadrant phase mask (FQPM) coronagraphs

Classical (Lyot) coronagraphy, as diagrammed in Fig. 1, may be classified as a form of “amplitude” coronagraphy, placing an opaque spot on the image of the star in an intermediate focal plane. Fourier-optical analysis of the progression of light through the instrument shows that much of the on-axis light is diverted to the periphery of a reimaged pupil, where it can be blocked by an opaque Lyot stop [2

2 . A. Sivaramakrishnan , C. D. Koresko , R. B. Makidon , T. Berkefeld , and M. J. Kuchner , “ Ground-based Coronagraphy with High-order Adaptive Optics ,” Astrophys. J. 552 , 397 ( 2001 ). [CrossRef]

]. Images in the final focal plane have the bright central star deeply suppressed, but off-axis sources (companions) are little affected by the coronagraph. An important technical point, generic to all coronagraphs, is that the Airy ring structure of the response pattern from the central star is deeply suppressed as well, effectively attenuating some kinds of speckles [3

3 . E. E. Bloemhof , “ Remnant Speckles in a Highly Corrected Coronagraph ,” Astrophys. J. 610 , L69 ( 2004 ). [CrossRef]

].

Outstanding performance has been achieved by the FQPM coronagraph with monochromatic masks in laboratory tests [7

7 . P. Riaud , A. Boccaletti , J. Baudrand , and D. Rouan , “ The Four-Quadrant Phase Mask Coronagraph. III. Laboratory Performance ,” PASP 115 , 712 ( 2003 ). [CrossRef]

], inspiring trials at large telescopes [8

8 . A. Boccaletti , P. Riaud , P. Baudoz , J. Baudrand , D. Rouan , D. Gratadour , F. Lacombe , and A.-M. Lagrange , “ The Four-Quadrant Phase Mask Coronagraph. IV. First Light at the Very Large Telescope ,” PASP 116 , 1061 ( 2004 ). [CrossRef]

,9

9 . P. Haguenauer , E. Serabyn , E. E. Bloemhof , J. K. Wallace , R. O. Gappinger , B. P. Mennesson , M. Troy , C. D. Koresko , and J. D. Moore , “ An off-axis Four-Quadrant Phase-Mask coronagraph for Palomar: high contrast near bright stars imager ,” Proc. SPIE 5905 , 59050S-1 ( 2005 ).

]. At levels of correction available from current adaptive optics systems, monochromatic masks may be used effectively over the fairly substantial bandwidths characterizing standard astronomical interference filters. First observations at Palomar [9

9 . P. Haguenauer , E. Serabyn , E. E. Bloemhof , J. K. Wallace , R. O. Gappinger , B. P. Mennesson , M. Troy , C. D. Koresko , and J. D. Moore , “ An off-axis Four-Quadrant Phase-Mask coronagraph for Palomar: high contrast near bright stars imager ,” Proc. SPIE 5905 , 59050S-1 ( 2005 ).

] in the Brackett γ filter (λ=2.168 μm; Δλ/λ~0.01), fed by the high-order PALAO adaptive optics system [10

10 . R. G. Dekany , “ The Palomar Adaptive Optics System ,” in Adaptive Optics 13, OSA Technical Digest Series , 402 ( 1996 ).

,11

11 . M. Troy , R G. Dekany , B. R. Oppenheimer , E. E. Bloemhof , T. Trinh , F. Dekens , F. Shi , T. L Hayward , and B. Brandl , “ Palomar Adaptive Optics Project: Status and Performance ,” Proc. SPIE 4007 , 31 ( 2000 ). [CrossRef]

], used novel reimaging pre-optics to capture a portion of clear telescope aperture between the envelopes defined by the secondary and primary mirrors, avoiding the obscuration problem and delivering the very high Strehl ratio needed for best FQPM operation. Peak PSF attenuation of order 100 was achieved on the sky, limited by ghost reflections in the focal-plane mask; in the lab, with the mask tipped with respect to the optical beam to eliminate ghosts, attenuation ratios of a few thousand were seen. The monochromatic mask was made by depositing dielectric of index n in quadrants II and IV with extra thickness Δt giving phase

Fig. 1. Schematic of operation of a coronagraph. The classical Lyot coronagraph and the recently-devised four-quadrant phase mask (FQPM) coronagraph share this architecture, but use different masks in the intermediate focal plane FP1. (The Lyot coronagraph uses an opaque spot of diameter ~λ/D; the FQPM uses a phase mask that evenly divides the intermediate focal plane and shifts phase in alternating quadrants by 0/π/0/π.) The FQPM works best with a circular, unobscured entrance pupil. Either Lyot or FQPM diverts light from an unresolved on-axis star to the outer edge of the reimaged pupil, P2, where it may be blocked by a “Lyot” stop of diameter somewhat less than that of the pupil.
Δφ=2πλ(n1)Δt~π;
(1)

that is, the OPL through the extra dielectric layer is a half-wave greater than through an equal thickness of air. The monochromatic nature of this approach is evident from the form of Eq. (1). With broadband light of spectral width Δλ, the overall starlight rejection factor Rs of such a monochromatic mask may be expected to be limited to [7

7 . P. Riaud , A. Boccaletti , J. Baudrand , and D. Rouan , “ The Four-Quadrant Phase Mask Coronagraph. III. Laboratory Performance ,” PASP 115 , 712 ( 2003 ). [CrossRef]

]

RS(Δλ)48π2(λΔλ)2.
(2)

3. Achromatization of the FQPM focal-plane mask: beam splitter phase relationship

Some fundamental achromatic relationships connecting phases of transmitted and reflected beams in a beam splitter follow from symmetries of these devices [15

15 . J. D. Phillips , “ Beamsplitters for Astronomical Optical Interferometry ,” Proc. SPIE , 2477 , 132 ( 1995 ). [CrossRef]

,16

16 . W. A. Traub , “ Beam Combination and Fringe Measurement ,” in Principles of Long Baseline Stellar Interferometry, Course Notes from the 1999 Michelson Summer School , P. R. Lawson , ed., Chap. 3, p. 31 ( 1999 ).

]. These relationships have recently been exploited in designs for a broadband phase contrast wavefront sensor [17

17 . E. E. Bloemhof and J. K. Wallace , “ Simple broadband implementation of a phase contrast wavefront sensor for adaptive optics ,” Opt. Express 12 , 6240 ( 2004 ), http://www.opticsexpress.org/abstract. cfm?URI=OPEX-12-25-6240 . [CrossRef] [PubMed]

] and for a ‘self-nulling’ beam combiner [18

18 . E. E. Bloemhof , “ Design of a ‘self-nulling’ beam combiner needing no external phase inversion ,” Opt. Comm. , in press.

]. The latter device would simplify the architecture of planet-finding nulling interferometers, realizing the function of the usual inverting pre-optics through the normal operation of the beam splitters themselves. In the current context, as with the ‘self-nulling’ beam combiner, a very general symmetry (time-reversal) is exploited, so the beam splitters need not have particularly stringent properties to achieve the desired phase performance (unlike the wavefront sensor, for example, which requires a front-back symmetric beam splitter). For intensity balance, a major practical consideration with any FQPM mask, the approach to be presented here will require good matching of R and T, beam splitter intensity (power) reflection and transmission coefficients.

Consider a beam splitter with complex electric-field reflection/transmission coefficients r,r’,t,t’ (i.e., R=|r|2 is the power reflection coefficient, a real number). Primed quantities denote a beam incident on the back surface rather than the front. It is commonly known that t=t’, by the so-called front and back incidence theorem. No such simple relation holds for r,r’. But, for a beam splitter with dielectric (non-absorbing) layers, consideration of time-reversal symmetry indicates that transmission and reflection coefficients rigorously obey [19

19 . P. Yeh , Optical Waves in Layered Media , ( Wiley, New York , 1988 ).

]

tt'*+rr*=1;tr'*+rt*=0,
(3)

where the asterisk denotes complex conjugation. As shown in [19

19 . P. Yeh , Optical Waves in Layered Media , ( Wiley, New York , 1988 ).

], rr’ and tt for such beam splitters are always opposite in sign, i.e., shifted in phase by π, which is precisely the relative phase required by the FQPM focal-plane mask. The π relative phase relationship holds for any wavelength and for either polarization. Note again that this phase relationship does not place any special requirements on the beam splitter, such as front/back symmetry (which is required by the beam splitter used in a broadband phase contrast wavefront sensor to produce an achromatic π/2 phase shift [17

17 . E. E. Bloemhof and J. K. Wallace , “ Simple broadband implementation of a phase contrast wavefront sensor for adaptive optics ,” Opt. Express 12 , 6240 ( 2004 ), http://www.opticsexpress.org/abstract. cfm?URI=OPEX-12-25-6240 . [CrossRef] [PubMed]

]).

An implementation of this phase relationship equivalent to an FQPM focal-plane mask is shown conceptually in Fig. 2. Two matched beam splitters, made together in a single fabrication run, generate the beam components rr’ and tt. Each lies in a focal plane. The converging telescope beam is reimaged to the second focus by intermediate optics that may schematically consist of two ellipsoidal mirrors (matched to apply equal phase shifts to the two beam paths) or similar optics, e.g. pairs of off-axis paraboloids. These auxiliary optics must preserve the high wavefront accuracy needed by FQPM coronagraphy: rms wavefront quality δ, in nm, gives [7

7 . P. Riaud , A. Boccaletti , J. Baudrand , and D. Rouan , “ The Four-Quadrant Phase Mask Coronagraph. III. Laboratory Performance ,” PASP 115 , 712 ( 2003 ). [CrossRef]

] a starlight rejection factor Rs(δ)=[λ/(πδ)]2. The second beam splitter is mounted upside-down with respect to the first, to impart r’ rather than r to the upper beam path. Two beams emerge from the second beam splitter, but only the upper output port combines the components necessary for on-axis nulling, so half of the incident signal power is lost. (But contrast rather than raw sensitivity is often paramount in coronagraphic observations: even rather bright companions may be lost in the glare of much brighter stars.)

To deliver only correctly-phased beams to the appropriate focal-plane quadrants, intensity masks (blocks) are inserted as shown in Fig. 2. Note that these are not the sophisticated phase-shifting masks of thin-film FQPM devices considered earlier: instead, they are simple amplitude stops, opaque and clear in alternating quadrants. The two masks are clocked with respect to each other by 90°, as indicated in Fig. 2, and this directs rr’/tt/rr’/tt to the four quadrants, giving phases alternating by π as needed for FQPM coronagraphy.

Fig. 2. Schematic achromatic implementation of the FQPM coronagraph using innate phase-shifting properties of beam splitters. A converging telescope beam is focused on the first beam splitter and produces a transmitted and a reflected beam. Masks immediately following define the four FQPM quadrants; these are simple intensity masks consisting of alternating opaque and transparent areas. Each beam is refocused on a second beam splitter, matched to the first, by suitable mirrors M1 that are matched to each other. Then the upper output beam is proportional to either rr’ (for clear quadrants of the mask in the upper path) or tt (for clear quadrants of the mask in the lower path). For general dielectric (non-absorbing) beam splitters, which need not be symmetric, these two terms are automatically out of phase by π at any wavelength or polarization (see text). With quadrant mask images suitably aligned, a broadband FQPM focal-plane mask results. (Subsequent optics, not shown, form a reimaged pupil with Lyot stop and a final image plane in which light from an on-axis point source will be coronagraphically suppressed.) The on-axis attenuation achieved will be limited mainly by the tolerance to which beam splitter coatings can deliver R=T over a broad spectral band.

4. Matching intensity between quadrants; fabrication and alignment issues

To realize FQPM coronagraphic operation, the focal-plane mask should ideally give uniform intensity over the four quadrants at the output, where the rr’ and tt beams reunite. In the approach presented here, that requires careful beam splitter design and fabrication to ensure matching of R=T as closely as possible over a broad spectral range. However, although the sensitivity of FQPM operation to intensity imbalances due to tip/tilt residuals is great [6

6 . P. Riaud , A. Boccaletti , D. Rouan , F. Lemarquis , and A. Labeyrie , “ The Four-Quadrant Phase-Mask Coronagraph. II. Simulations ,” PASP 113 , 1145 ( 2001 ). [CrossRef]

], it appears that sensitivity to imbalances of the kind incurred by the proposed beam splitter phase shifting scheme is much less. A beam splitter with imperfectly matched R=T will still give uniform intensity over each quadrant, and will match intensities in paired (opposite) quadrants. Quadrants I and III will not match quadrants II and IV, however. This still gives a moderate nulling of the excess light, analogous perhaps to the partial nulling of a stellar image placed on a quadrant boundary but not at the center of an FQPM focal-plane mask. This effect substantially relaxes the R=T requirement; performance is much better than would be indicated by assuming that all unmatched light detracts from rejection. As a quantitative example of this, numerical simulations were carried out for beam splitter parameters well within the current state of the fabrication art. Matching R and T has been demonstrated to better than a percentage point over substantially larger bandwidths than, for example, the astronomical K-band (Δλ/λ~0.15) [20

20 . J. Kim , J. R. Birge , V. Sharma , J. G. Fujimoto , F. X. Kärtner , V. Scheuer , and G. Angelow , “ Ultrabroadband beam splitter with matched group-delay dispersion ,” Opt. Lett. 30 , 1569 ( 2005 ). [CrossRef] [PubMed]

]. (The particular example cited was for one linear polarization at a 45° angle of incidence.) Taking 51:49 intensity ratios in an FQPM coronagraph gives a rejection exceeding 1000, depending on the radius of Lyot stop chosen. (Other errors are assumed negligible.) So though made for another purpose, these beam splitters could give competitive FQPM performance if used in the configuration of Fig. 2. Better beam splitter coatings still appear achievable if specifically designed for this application. Phases of transmission and reflection coefficients may be left unconstrained in the design, their coordination automatically assured by Eq. (3), and care may be concentrated on equalizing magnitudes of r and t. One could optimize coatings for just one polarization, and rely on polarizing filters to select only that component through the beam-splitter FQPM.

For high-performance FQPM operation, the intensity masks in Fig. 2 should have edge precision of ~(λ/D)/30 in angular units on the sky, or ~1 um in distance units in the focal plane at K-band (λ=2.2 μm) for the f/16 beam in the Palomar FQPM system [9

9 . P. Haguenauer , E. Serabyn , E. E. Bloemhof , J. K. Wallace , R. O. Gappinger , B. P. Mennesson , M. Troy , C. D. Koresko , and J. D. Moore , “ An off-axis Four-Quadrant Phase-Mask coronagraph for Palomar: high contrast near bright stars imager ,” Proc. SPIE 5905 , 59050S-1 ( 2005 ).

]. This precision is readily achieved with optical contact lithography. One mask must be optically superposed on the image of the other in the first beam splitter to a comparable precision and stability. This is a fine mechanical adjustment, but feasible. (This tolerance could be eased, of course, by operating the broadband FQPM mask proposed here in a slower beam, of higher f/#.) The difference of optical pathlengths along the two arms between the two focal planes must be stable; for highest performance, active stabilization might be required.

The quadrant-mask mounting scheme shown in Fig. 2 is intended to be somewhat schematic and conceptual, illustrating the principle of beam splitter phase shifts. Detailed design work will be required to find the best layout, and to determine if this approach is fundamentally competitive with the alternatives. Beam angles of incidence are drawn rather arbitrarily at 45°, but may well be optimized at some other angle. Polarization effects at M1, if literally an ellipsoidal mirror, could be minimized by steering beams to near-normal incidence with folding flats. More convenient mask arrangements may be found. Masks must be within roughly a depth of focus, ~±2(f/#)2λ ~±2(f/#)[(f/#)λ], of the beam splitter, measured along the ray path, and they must ideally be at least ~32λ/D in diameter for optimum FQPM nulling [6

6 . P. Riaud , A. Boccaletti , D. Rouan , F. Lemarquis , and A. Labeyrie , “ The Four-Quadrant Phase-Mask Coronagraph. II. Simulations ,” PASP 113 , 1145 ( 2001 ). [CrossRef]

]. Comparison of these two expressions shows that at f/16 the masks will not interfere with each other or with the incident optical beam if placed as in Fig. 2. (For f/16 at K-band, the mask should ideally be 1 mm long, and placed within ±1 mm of the focal point on the beam splitter; it could be placed as close as 0.5 mm before contact, though these constraints might dictate using a moderately thin beam splitter substrate.) These tolerances also relax if a higher f/# is chosen. Ghost reflections in the beam splitters, which might limit peak PSF attenuation, may be eliminated by using substrates wedged at a few degrees.

5. Conclusions

FQPM coronagraphy is a promising technique for achieving deep suppression of light from a bright central star, and searching to a very small inner working angle for faint companions. Achromatic phase masks would be most useful for astronomy. This paper has presented a novel scheme exploiting the natural phase relationships that exist in dielectric beam splitters. The design requires matching the R, T coefficients of each beam splitter to moderately high precision over a broad spectral band, but the π phase shifts needed for FQPM operation are achieved automatically for all wavelengths and both polarizations.

Acknowledgments

The research described in this publication was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

References and links

1 .

J. J. Lissauer , “ Extrasolar planets ,” Nature 419 , 355 ( 2002 ). [CrossRef] [PubMed]

2 .

A. Sivaramakrishnan , C. D. Koresko , R. B. Makidon , T. Berkefeld , and M. J. Kuchner , “ Ground-based Coronagraphy with High-order Adaptive Optics ,” Astrophys. J. 552 , 397 ( 2001 ). [CrossRef]

3 .

E. E. Bloemhof , “ Remnant Speckles in a Highly Corrected Coronagraph ,” Astrophys. J. 610 , L69 ( 2004 ). [CrossRef]

4 .

D. Rouan , P. Riaud , A. Boccaletti , Y. Clénet , and A. Labeyrie , “ The Four-Quadrant Phase-Mask Coronagraph. I. Principle ,” PASP 112 , 1479 ( 2000 ). [CrossRef]

5 .

J. P. Lloyd , D. T. Gavel , J. R. Graham , P. E. Hodge , A. Sivaramakrishnan , and G. M. Voit , “ Four Quadrant Phase Mask: Analytical Calculation and Pupil Geometry ,” Proc. SPIE 4860 , 171 ( 2003 ). [CrossRef]

6 .

P. Riaud , A. Boccaletti , D. Rouan , F. Lemarquis , and A. Labeyrie , “ The Four-Quadrant Phase-Mask Coronagraph. II. Simulations ,” PASP 113 , 1145 ( 2001 ). [CrossRef]

7 .

P. Riaud , A. Boccaletti , J. Baudrand , and D. Rouan , “ The Four-Quadrant Phase Mask Coronagraph. III. Laboratory Performance ,” PASP 115 , 712 ( 2003 ). [CrossRef]

8 .

A. Boccaletti , P. Riaud , P. Baudoz , J. Baudrand , D. Rouan , D. Gratadour , F. Lacombe , and A.-M. Lagrange , “ The Four-Quadrant Phase Mask Coronagraph. IV. First Light at the Very Large Telescope ,” PASP 116 , 1061 ( 2004 ). [CrossRef]

9 .

P. Haguenauer , E. Serabyn , E. E. Bloemhof , J. K. Wallace , R. O. Gappinger , B. P. Mennesson , M. Troy , C. D. Koresko , and J. D. Moore , “ An off-axis Four-Quadrant Phase-Mask coronagraph for Palomar: high contrast near bright stars imager ,” Proc. SPIE 5905 , 59050S-1 ( 2005 ).

10 .

R. G. Dekany , “ The Palomar Adaptive Optics System ,” in Adaptive Optics 13, OSA Technical Digest Series , 402 ( 1996 ).

11 .

M. Troy , R G. Dekany , B. R. Oppenheimer , E. E. Bloemhof , T. Trinh , F. Dekens , F. Shi , T. L Hayward , and B. Brandl , “ Palomar Adaptive Optics Project: Status and Performance ,” Proc. SPIE 4007 , 31 ( 2000 ). [CrossRef]

12 .

D. Mawet , C. Lenaerts , V. Moreau , Y. Renotte , D. Rouan , and J. Surdej , “ Achromatic Four Quadrant Phase Mask using the Dispersion of Form Birefringence ,” Proc. SPIE 4860 , 182 ( 2003 ). [CrossRef]

13 .

J. K. Wallace , G. Hardy , and E. Serabyn , “ Deep and stable interferometric nulling of broadband light with implications for observing planets around nearby stars ,” Nature 406 , 700 ( 2000 ). [CrossRef] [PubMed]

14 .

R. M. Morgan , J. H. Burge , and N. Woolf , “ Final laboratory results of visible nulling with dielectric plates ,” Proc. SPIE 4838 , 644 ( 2003 ). [CrossRef]

15 .

J. D. Phillips , “ Beamsplitters for Astronomical Optical Interferometry ,” Proc. SPIE , 2477 , 132 ( 1995 ). [CrossRef]

16 .

W. A. Traub , “ Beam Combination and Fringe Measurement ,” in Principles of Long Baseline Stellar Interferometry, Course Notes from the 1999 Michelson Summer School , P. R. Lawson , ed., Chap. 3, p. 31 ( 1999 ).

17 .

E. E. Bloemhof and J. K. Wallace , “ Simple broadband implementation of a phase contrast wavefront sensor for adaptive optics ,” Opt. Express 12 , 6240 ( 2004 ), http://www.opticsexpress.org/abstract. cfm?URI=OPEX-12-25-6240 . [CrossRef] [PubMed]

18 .

E. E. Bloemhof , “ Design of a ‘self-nulling’ beam combiner needing no external phase inversion ,” Opt. Comm. , in press.

19 .

P. Yeh , Optical Waves in Layered Media , ( Wiley, New York , 1988 ).

20 .

J. Kim , J. R. Birge , V. Sharma , J. G. Fujimoto , F. X. Kärtner , V. Scheuer , and G. Angelow , “ Ultrabroadband beam splitter with matched group-delay dispersion ,” Opt. Lett. 30 , 1569 ( 2005 ). [CrossRef] [PubMed]

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(310.6860) Thin films : Thin films, optical properties
(350.1260) Other areas of optics : Astronomical optics

ToC Category:
Research Papers

Citation
E. E. Bloemhof, "Achromatic four-quadrant phase mask (FQPM) coronagraphy using natural beam splitter phase shifts," Opt. Express 13, 10055-10060 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-25-10055


Sort:  Journal  |  Reset  

References

  1. J. J. Lissauer, "Extrasolar planets," Nature 419, 355 (2002). [CrossRef] [PubMed]
  2. A. Sivaramakrishnan, C. D. Koresko, R. B. Makidon, T. Berkefeld, and M. J. Kuchner, "Ground-based Coronagraphy with High-order Adaptive Optics," Astrophys. J. 552, 397 (2001). [CrossRef]
  3. E. E. Bloemhof, "Remnant Speckles in a Highly Corrected Coronagraph," Astrophys. J. 610, L69 (2004). [CrossRef]
  4. D. Rouan, P. Riaud, A. Boccaletti, Y. Clénet, and A. Labeyrie, "The Four-Quadrant Phase-Mask Coronagraph. I. Principle," PASP 112, 1479 (2000). [CrossRef]
  5. J. P. Lloyd, D. T. Gavel, J. R. Graham, P. E. Hodge, A. Sivaramakrishnan, and G. M. Voit, "Four Quadrant Phase Mask: Analytical Calculation and Pupil Geometry," Proc. SPIE 4860, 171 (2003). [CrossRef]
  6. P. Riaud, A. Boccaletti, D. Rouan, F. Lemarquis, and A. Labeyrie, "The Four-Quadrant Phase-Mask Coronagraph. II. Simulations," PASP 113, 1145 (2001). [CrossRef]
  7. P. Riaud, A. Boccaletti, J. Baudrand, and D. Rouan, "The Four-Quadrant Phase Mask Coronagraph. III. Laboratory Performance," PASP 115, 712 (2003). [CrossRef]
  8. A. Boccaletti, P. Riaud, P. Baudoz, J. Baudrand, D. Rouan, D. Gratadour, F. Lacombe, and A.-M. Lagrange, "The Four-Quadrant Phase Mask Coronagraph. IV. First Light at the Very Large Telescope," PASP 116, 1061 (2004). [CrossRef]
  9. P. Haguenauer, E. Serabyn, E. E. Bloemhof, J. K. Wallace, R. O. Gappinger, B. P. Mennesson, M. Troy, C. D. Koresko, and J. D. Moore, "An off-axis Four-Quadrant Phase-Mask coronagraph for Palomar: high contrast near bright stars imager," Proc. SPIE 5905, 59050S-1 (2005).
  10. R. G. Dekany, "The Palomar Adaptive Optics System," in Adaptive Optics 13, OSA Technical Digest Series, 402 (1996).
  11. M. Troy, R G. Dekany, B. R.Oppenheimer, E. E. Bloemhof, T. Trinh, F. Dekens, F. Shi, T. L. Hayward, and B. Brandl, "Palomar Adaptive Optics Project: Status and Performance," Proc. SPIE 4007, 31 (2000). [CrossRef]
  12. D. Mawet, C. Lenaerts, V. Moreau, Y. Renotte, D. Rouan, and J. Surdej, "Achromatic Four Quadrant Phase Mask using the Dispersion of Form Birefringence," Proc. SPIE 4860, 182 (2003). [CrossRef]
  13. J. K. Wallace, G. Hardy, and E. Serabyn, "Deep and stable interferometric nulling of broadband light with implications for observing planets around nearby stars," Nature 406, 700 (2000). [CrossRef] [PubMed]
  14. R. M. Morgan, J. H. Burge, and N. Woolf, "Final laboratory results of visible nulling with dielectric plates," Proc. SPIE 4838, 644 (2003). [CrossRef]
  15. J. D. Phillips, "Beamsplitters for Astronomical Optical Interferometry," Proc. SPIE, 2477, 132 (1995). [CrossRef]
  16. W. A. Traub, "Beam Combination and Fringe Measurement," in Principles of Long Baseline Stellar Interferometry, Course Notes from the 1999 Michelson Summer School, P. R. Lawson, ed., Chap. 3, p. 31 (1999).
  17. E. E. Bloemhof and J. K. Wallace, "Simple broadband implementation of a phase contrast wavefront sensor for adaptive optics," Opt. Express 12, 6240 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6240.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6240.</a> [CrossRef] [PubMed]
  18. E. E. Bloemhof, "Design of a 'self-nulling' beam combiner needing no external phase inversion," Opt. Comm., in press.
  19. P. Yeh, Optical Waves in Layered Media, (Wiley, New York, 1988).
  20. J. Kim, J. R. Birge, V. Sharma, J. G. Fujimoto, F. X. Kärtner, V. Scheuer, and G. Angelow, "Ultrabroadband beam splitter with matched group-delay dispersion," Opt. Lett. 30, 1569 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited