## Formation of discrete solitons in light-induced photonic lattices

Optics Express, Vol. 13, Issue 6, pp. 1816-1826 (2005)

http://dx.doi.org/10.1364/OPEX.13.001816

Acrobat PDF (286 KB)

### Abstract

We present both experimental and theoretical results on discrete solitons in two-dimensional optically-induced photonic lattices in a variety of settings, including fundamental discrete solitons, vector-like discrete solitons, discrete dipole solitons, and discrete soliton trains. In each case, a clear transition from two-dimensional discrete diffraction to discrete trapping is demonstrated with a waveguide lattice induced by partially coherent light in a bulk photorefractive crystal. Our experimental results are in good agreement with the theoretical analysis of these effects.

© 2005 Optical Society of America

## 1. Introduction

1. D.N. Christodoulides, F. Lederer, and Y. Siberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature **424**, 817 (2003). [CrossRef] [PubMed]

2. D. Campbell, S. Flach, and Y.S. Kivshar, “Localizing energy through nonlinearity and discreteness,” Phys. Today , **57**, 43 (2004). [CrossRef]

3. D. N. Christodoulides and R. I. Joseph, “Discrete self-focusing in nonlinear arrays of coupled waveguides,” Opt. Lett. **13**, 794 (1988). [CrossRef] [PubMed]

4. H.S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, “Observation of discrete solitons in optical waveguide arrays,” Phys. Rev. Lett. **81**, 3383 (1998). [CrossRef]

5. R. Morandotti, H. S. Eisenberg, Y. Silberberg, M. Sorel, and J. S. Aitchison, “Self-Focusing and Defocusing in Waveguide Arrays,” Phys. Rev. Lett. **86**, 3296 (2001). [CrossRef] [PubMed]

6. N.K. Efremidis, S. Sears, D.N. Christodoulides, J.W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E **66**, 046602 (2002). [CrossRef]

7. J.W. Fleischer, T. Carmon, M. Segev, N.K. Efremidis, and D.N. Christodoulides, “Observation of Discrete Solitons in Optically Induced Real Time Waveguide Arrays,” Phys. Rev. Lett. **90**, 023902 (2003). [CrossRef] [PubMed]

9. D. Neshev, E. Ostrovskaya, Y. Kivshar, and W. Krolikowski, “Spatial solitons in optically induced gratings,” Opt. Lett. **28**, 710 (2003). [CrossRef] [PubMed]

10. H. Martin, E.D. Eugenieva, Z. Chen, and D.N. Christodoulides, “Discrete solitons and soliton-induced dislocations in partially-coherent photonic lattices,” Phys. Rev. Lett. **92**, 123902 (2004); [CrossRef] [PubMed]

11. Z. Chen, H. Martin, E.D. Eugenieva, J. Xu, and A. Bezryadina, “Anisotropic enhancement of discrete diffraction and formation of two-dimensional discrete-soliton trains,” Phys. Rev. Lett. **92**, 143902 (2004). [CrossRef] [PubMed]

12. B.A. Malomed and P.G. Kevrekidis, “Discrete vortex solitons,” Phys. Rev. E **64**, 026601 (2001). [CrossRef]

13. J. Yang and Z.H. Musslimani, “Fundamental and vortex solitons in a two-dimensional optical lattice,” Opt. Lett. **28**, 2094 (2003). [CrossRef] [PubMed]

14. D.N. Neshev, T.J. Alexander, E.A. Ostrovskaya, Y.S. Kivshar, H. Martin, I. Makasyuk, and Z. Chen, “Observation of discrete vortex solitons in optically-induced photonic lattices,” Phys. Rev. Lett. **92**, 123903 (2004). [CrossRef] [PubMed]

15. J.W. Fleischer, G. Bartal, O. Cohen, O. Manela, M. Segev, J. Hudock, and D.N. Christodoulides, “Observation of vortex-ring discrete solitons in 2D photonic lattices.” Phys. Rev. Lett. **92**, 123904 (2004). [CrossRef] [PubMed]

*coherent*multi-beam interference [7

7. J.W. Fleischer, T. Carmon, M. Segev, N.K. Efremidis, and D.N. Christodoulides, “Observation of Discrete Solitons in Optically Induced Real Time Waveguide Arrays,” Phys. Rev. Lett. **90**, 023902 (2003). [CrossRef] [PubMed]

9. D. Neshev, E. Ostrovskaya, Y. Kivshar, and W. Krolikowski, “Spatial solitons in optically induced gratings,” Opt. Lett. **28**, 710 (2003). [CrossRef] [PubMed]

*incoherent*photonic lattice. This in turn enables stable lattice formation due to suppression of incoherent modulation instability [16

16. M. Soljacic, M Segev, T. Coskun, D. N. Christodoulides, and A. Vishwanath, “Modulation instability of incoherent beams in noninstantaneous nonlinear media,” Phys. Rev. Lett. **84**, 467 (2000). [CrossRef] [PubMed]

10. H. Martin, E.D. Eugenieva, Z. Chen, and D.N. Christodoulides, “Discrete solitons and soliton-induced dislocations in partially-coherent photonic lattices,” Phys. Rev. Lett. **92**, 123902 (2004); [CrossRef] [PubMed]

11. Z. Chen, H. Martin, E.D. Eugenieva, J. Xu, and A. Bezryadina, “Anisotropic enhancement of discrete diffraction and formation of two-dimensional discrete-soliton trains,” Phys. Rev. Lett. **92**, 143902 (2004). [CrossRef] [PubMed]

^{3}, r

_{33}=280 pm/V and r

_{13}=24 pm/V) illuminated by an argon laser beam (λ=488 nm) passing through a rotating diffuser and an amplitude mask as shown in Fig. 1. The biased crystal provides a self-focusing noninstantaneous nonlinearity. The amplitude mask provides spatial modulation after the diffuser on the otherwise uniform beam, which exhibits a pixel-like intensity pattern at the input face of the crystal [17

17. Z. Chen and K. MaCarthy, “Spatial soliton pixles from partially coherent light,” Opt. Lett. **27**, 2019 (2002). [CrossRef]

18. Z. Chen, I. Makasyuk, A. Bezryadina, and J. Yang, “Observation of two-dimensional lattice vector solitons,” Opt. Lett. , **29**, 1656 (2004). [CrossRef] [PubMed]

19. J. Yang, I. Makasyuk, A. Bezryadina, and Z. Chen, “Dipole solitons in optically-induced two-dimensional photonic lattices,” Opt. Lett. , **29**, 1662 (2004). [CrossRef] [PubMed]

*n*

_{e}=[

_{33}

*E*

_{0}/2](1+I)

^{-1}and Δ

*n*

_{o}=[

*r*

_{13}

*E*

_{0}/2](1+I)

^{-1}for e-polarized and o-polarized beams, respectively [6

6. N.K. Efremidis, S. Sears, D.N. Christodoulides, J.W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E **66**, 046602 (2002). [CrossRef]

11. Z. Chen, H. Martin, E.D. Eugenieva, J. Xu, and A. Bezryadina, “Anisotropic enhancement of discrete diffraction and formation of two-dimensional discrete-soliton trains,” Phys. Rev. Lett. **92**, 143902 (2004). [CrossRef] [PubMed]

*E*

_{0}is the applied electric field along the crystalline c-axis (x-direction), and

*I*is the intensity of the beam normalized to the background illumination. Due to the difference between the nonlinear electro-optic coefficient

*r*

_{33}and

*r*

_{13}, Δ

*n*

_{e}is more than 10 times larger than Δ

*n*

_{o}under the same experimental conditions. Thus, the o-polarized lattice beam experiences only weak nonlinear index changes as compared with the e-polarized probe beam, so the lattice can be considered as

*linear*during propagation. In Fig. 1, the insert shows a typical example of a 2D lattice pattern created in experiment. The square lattice has its principal axes orientated in the 450 directions relative to the x- and y-axis, with a spatial period of 20 µm. Indeed, as the bias field is increased to more than 3 kV/cm, the lattice structure remains nearly invariant, except a slight change in its contrast at high bias due to nonzero

*r*

_{13}.

## 2. Fundamental discrete solitons

8. J.W. Fleischer, M. Segev, N.K. Efremidis, and D.N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature **422**, 147 (2003). [CrossRef] [PubMed]

13. J. Yang and Z.H. Musslimani, “Fundamental and vortex solitons in a two-dimensional optical lattice,” Opt. Lett. **28**, 2094 (2003). [CrossRef] [PubMed]

20. J. Hudock, N. K. Efremidis, and D. N. Christodoulides, “Anisotropic diffraction and elliptic discrete solitons in two-dimensional waveguide arrays,” Opt. Lett. **29**, 268 (2004). [CrossRef] [PubMed]

21. D. N. Christodoulides, T. Coskun, M. Mitchell, and M. Segev, “Theory of incoherent self-focusing in biased photorefractive media,” Phys. Rev. Lett. **78**, 646 (1997). [CrossRef]

10. H. Martin, E.D. Eugenieva, Z. Chen, and D.N. Christodoulides, “Discrete solitons and soliton-induced dislocations in partially-coherent photonic lattices,” Phys. Rev. Lett. **92**, 123902 (2004); [CrossRef] [PubMed]

## 3. Discrete dipole and vector solitons

22. M.J. Ablowitz and Z.H. Musslimani, “Discrete vector spatial solitons in a nonlinear waveguide array,” Phys. Rev. E **65**, 056618 (2002). [CrossRef]

23. J. Hudock, P. G. Kevrekidis, B. A. Malomed, and D. N. Christodoulides, “Discrete vector solitons in two-dimensional nonlinear waveguide arrays: Solutions, stability, and dynamics,” Phys. Rev. E **67**, 056618 (2003). [CrossRef]

24. J. Meier, J. Hudock, D.N. Christodoulides, G. Stegeman, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Discrete vector solitons in Kerr nonlinear waveguide arrays ”. Phys. Rev. Lett. **91**, 143907 (2003). [CrossRef] [PubMed]

18. Z. Chen, I. Makasyuk, A. Bezryadina, and J. Yang, “Observation of two-dimensional lattice vector solitons,” Opt. Lett. , **29**, 1656 (2004). [CrossRef] [PubMed]

18. Z. Chen, I. Makasyuk, A. Bezryadina, and J. Yang, “Observation of two-dimensional lattice vector solitons,” Opt. Lett. , **29**, 1656 (2004). [CrossRef] [PubMed]

19. J. Yang, I. Makasyuk, A. Bezryadina, and Z. Chen, “Dipole solitons in optically-induced two-dimensional photonic lattices,” Opt. Lett. , **29**, 1662 (2004). [CrossRef] [PubMed]

29. S.R. Singh and D.N. Christodoulides, “Evolution of spatial optical solitons in biased photorefractive media under steady state conditions,” Opt. Commun. **118**, 569 (1995). [CrossRef]

25. J. Yang, I. Makasyuk, A. Bezryadina, and Z. Chen, “Dipole and Quadrupole Solitons in Optically-induced Two-dimensional Photonic Lattices: Theory and Experiment,” *Stud. Appl. Math*. **113**, 389 (2004). [CrossRef]

## 4. Discrete soliton trains

*linear*regime, we observe that the stripe beam breaks up into 2D filaments, and then it evolves into a train of 2D discrete solitons as the level of the nonlinearity for the stripe is gradually increased.

**92**, 143902 (2004). [CrossRef] [PubMed]

32. Z Chen, H. Martin, A. Bezryadina, D.N. Neshev, Y.S. Kivshar, and D.N. Christodoulides, “Experiments on Gaussian beams and vortices in optically-induced photonic lattices,” J. Opt. Soc. Am. B, to appear 2005. [CrossRef]

## 5. Summary

## Acknowledgments

## References and Links:

1. | D.N. Christodoulides, F. Lederer, and Y. Siberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature |

2. | D. Campbell, S. Flach, and Y.S. Kivshar, “Localizing energy through nonlinearity and discreteness,” Phys. Today , |

3. | D. N. Christodoulides and R. I. Joseph, “Discrete self-focusing in nonlinear arrays of coupled waveguides,” Opt. Lett. |

4. | H.S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, “Observation of discrete solitons in optical waveguide arrays,” Phys. Rev. Lett. |

5. | R. Morandotti, H. S. Eisenberg, Y. Silberberg, M. Sorel, and J. S. Aitchison, “Self-Focusing and Defocusing in Waveguide Arrays,” Phys. Rev. Lett. |

6. | N.K. Efremidis, S. Sears, D.N. Christodoulides, J.W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E |

7. | J.W. Fleischer, T. Carmon, M. Segev, N.K. Efremidis, and D.N. Christodoulides, “Observation of Discrete Solitons in Optically Induced Real Time Waveguide Arrays,” Phys. Rev. Lett. |

8. | J.W. Fleischer, M. Segev, N.K. Efremidis, and D.N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature |

9. | D. Neshev, E. Ostrovskaya, Y. Kivshar, and W. Krolikowski, “Spatial solitons in optically induced gratings,” Opt. Lett. |

10. | H. Martin, E.D. Eugenieva, Z. Chen, and D.N. Christodoulides, “Discrete solitons and soliton-induced dislocations in partially-coherent photonic lattices,” Phys. Rev. Lett. |

11. | Z. Chen, H. Martin, E.D. Eugenieva, J. Xu, and A. Bezryadina, “Anisotropic enhancement of discrete diffraction and formation of two-dimensional discrete-soliton trains,” Phys. Rev. Lett. |

12. | B.A. Malomed and P.G. Kevrekidis, “Discrete vortex solitons,” Phys. Rev. E |

13. | J. Yang and Z.H. Musslimani, “Fundamental and vortex solitons in a two-dimensional optical lattice,” Opt. Lett. |

14. | D.N. Neshev, T.J. Alexander, E.A. Ostrovskaya, Y.S. Kivshar, H. Martin, I. Makasyuk, and Z. Chen, “Observation of discrete vortex solitons in optically-induced photonic lattices,” Phys. Rev. Lett. |

15. | J.W. Fleischer, G. Bartal, O. Cohen, O. Manela, M. Segev, J. Hudock, and D.N. Christodoulides, “Observation of vortex-ring discrete solitons in 2D photonic lattices.” Phys. Rev. Lett. |

16. | M. Soljacic, M Segev, T. Coskun, D. N. Christodoulides, and A. Vishwanath, “Modulation instability of incoherent beams in noninstantaneous nonlinear media,” Phys. Rev. Lett. |

17. | Z. Chen and K. MaCarthy, “Spatial soliton pixles from partially coherent light,” Opt. Lett. |

18. | Z. Chen, I. Makasyuk, A. Bezryadina, and J. Yang, “Observation of two-dimensional lattice vector solitons,” Opt. Lett. , |

19. | J. Yang, I. Makasyuk, A. Bezryadina, and Z. Chen, “Dipole solitons in optically-induced two-dimensional photonic lattices,” Opt. Lett. , |

20. | J. Hudock, N. K. Efremidis, and D. N. Christodoulides, “Anisotropic diffraction and elliptic discrete solitons in two-dimensional waveguide arrays,” Opt. Lett. |

21. | D. N. Christodoulides, T. Coskun, M. Mitchell, and M. Segev, “Theory of incoherent self-focusing in biased photorefractive media,” Phys. Rev. Lett. |

22. | M.J. Ablowitz and Z.H. Musslimani, “Discrete vector spatial solitons in a nonlinear waveguide array,” Phys. Rev. E |

23. | J. Hudock, P. G. Kevrekidis, B. A. Malomed, and D. N. Christodoulides, “Discrete vector solitons in two-dimensional nonlinear waveguide arrays: Solutions, stability, and dynamics,” Phys. Rev. E |

24. | J. Meier, J. Hudock, D.N. Christodoulides, G. Stegeman, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Discrete vector solitons in Kerr nonlinear waveguide arrays ”. Phys. Rev. Lett. |

25. | J. Yang, I. Makasyuk, A. Bezryadina, and Z. Chen, “Dipole and Quadrupole Solitons in Optically-induced Two-dimensional Photonic Lattices: Theory and Experiment,” |

26. | P. G. Kevrekidis, A.R. Bishop, and K. Rasmussen, “Twisted localized modes,” Phys. Rev. E |

27. | A.A. Sukhorukov and Y.S. Kivshar, “Spatial optical solitons in nonlinear photonic crystals,” Phys. Rev. E |

28. | P.G. Kevrekidis, B.A. Malomed, and A.R. Bishop, “Bound states of two-dimensional solitons in the discrete nonlinear Schrodinger equation.” J. Phys. A |

29. | S.R. Singh and D.N. Christodoulides, “Evolution of spatial optical solitons in biased photorefractive media under steady state conditions,” Opt. Commun. |

30. | J. Yang, I. Makasyuk, H. Martin, P.G. Kevrekidis, B.A. Malomed, D.J. Frantzeskakis, and Z. Chen, “Necklace-like solitons in optically induced photonic lattices,” Phys. Rev. Lett, submitted. |

31. | A. Smerzi, A. Trombettoni, P. G. Kevrekidis, and A. R. Bishop, Dynamical superfluid-insulator transition in a chain of weakly coupled Bose-Einstein condensates,” Phys. Rev. Lett. |

32. | Z Chen, H. Martin, A. Bezryadina, D.N. Neshev, Y.S. Kivshar, and D.N. Christodoulides, “Experiments on Gaussian beams and vortices in optically-induced photonic lattices,” J. Opt. Soc. Am. B, to appear 2005. [CrossRef] |

**OCIS Codes**

(190.0190) Nonlinear optics : Nonlinear optics

(270.5530) Quantum optics : Pulse propagation and temporal solitons

**ToC Category:**

Focus Issue: Discrete solitons in nonlinear optics

**History**

Original Manuscript: December 8, 2004

Revised Manuscript: January 6, 2005

Published: March 21, 2005

**Citation**

Zhigang Chen, Hector Martin, Eugenia Eugenieva, Jingjun Xu, and Jianke Yang, "Formation of discrete solitons in light-induced photonic lattices," Opt. Express **13**, 1816-1826 (2005)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-6-1816

Sort: Journal | Reset

### References

- D.N. Christodoulides, F. Lederer and Y. Siberberg, "Discretizing light behaviour in linear and nonlinear waveguide lattices,�?? Nature 424, 817 (2003). [CrossRef] [PubMed]
- D. Campbell, S. Flach and Y.S. Kivshar, 'Localizing energy through nonlinearity and discreteness,�?? Phys. Today, 57, 43 (2004). [CrossRef]
- D. N. Christodoulides and R. I. Joseph, "Discrete self-focusing in nonlinear arrays of coupled waveguides,�?? Opt. Lett. 13, 794 (1988). [CrossRef] [PubMed]
- H.S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, "Observation of discrete solitons in optical waveguide arrays,�?? Phys. Rev. Lett. 81, 3383 (1998). [CrossRef]
- R. Morandotti, H. S. Eisenberg, Y. Silberberg, M. Sorel, and J. S. Aitchison, "Self-Focusing and Defocusing in Waveguide Arrays,�?? Phys. Rev. Lett. 86, 3296 (2001). [CrossRef] [PubMed]
- N.K. Efremidis, S. Sears, D.N. Christodoulides, J.W. Fleischer and M. Segev, �??Discrete solitons in photorefractive optically induced photonic lattices,�?? Phys. Rev. E 66, 046602 (2002). [CrossRef]
- J.W. Fleischer, T. Carmon, M. Segev, N.K. Efremidis, and D.N. Christodoulides, "Observation of Discrete Solitons in Optically Induced Real Time Waveguide Arrays,�?? Phys. Rev. Lett. 90, 023902 (2003). [CrossRef] [PubMed]
- J.W. Fleischer, M. Segev, N.K. Efremidis, and D.N. Christodoulides, "Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,�?? Nature 422, 147 (2003). [CrossRef] [PubMed]
- Neshev, E. Ostrovskaya, Y. Kivshar, and W. Krolikowski, "Spatial solitons in optically induced gratings,�?? Opt. Lett. 28, 710 (2003). [CrossRef] [PubMed]
- H. Martin, E.D. Eugenieva, Z. Chen and D.N. Christodoulides, "Discrete solitons and soliton-induced dislocations in partially-coherent photonic lattices,�?? Phys. Rev. Lett. 92, 123902 (2004); [CrossRef] [PubMed]
- Z. Chen, H. Martin, E.D. Eugenieva, J. Xu, and A. Bezryadina, "Anisotropic enhancement of discrete diffraction and formation of two-dimensional discrete-soliton trains,�?? Phys. Rev. Lett. 92, 143902 (2004). [CrossRef] [PubMed]
- B.A. Malomed and P.G. Kevrekidis, "Discrete vortex solitons,�?? Phys. Rev. E 64, 026601 (2001). [CrossRef]
- J. Yang and Z.H. Musslimani, "Fundamental and vortex solitons in a two-dimensional optical lattice,�?? Opt. Lett. 28, 2094 (2003). [CrossRef] [PubMed]
- D.N. Neshev, T.J. Alexander, E.A. Ostrovskaya, Y.S. Kivshar, H. Martin, I. Makasyuk, Z. Chen, �??Observation of discrete vortex solitons in optically-induced photonic lattices,�?? Phys. Rev. Lett. 92, 123903 (2004). [CrossRef] [PubMed]
- J.W. Fleischer, G. Bartal, O. Cohen, O. Manela, M. Segev, J. Hudock, D.N. Christodoulides, �??Observation of vortex-ring discrete solitons in 2D photonic lattices.�?? Phys. Rev. Lett. 92, 123904 (2004). [CrossRef] [PubMed]
- M. Soljacic, M, Segev, T. Coskun, D. N. Christodoulides, and A. Vishwanath, "Modulation instability of incoherent beams in noninstantaneous nonlinear media,�?? Phys. Rev. Lett. 84, 467 (2000). [CrossRef] [PubMed]
- Z. Chen and K. MaCarthy, "Spatial soliton pixles from partially coherent light,�?? Opt. Lett. 27, 2019 (2002). [CrossRef]
- Z. Chen, I. Makasyuk, A. Bezryadina, and J. Yang, "Observation of two-dimensional lattice vector solitons,�?? Opt. Lett., 29, 1656 (2004). [CrossRef] [PubMed]
- J. Yang, I. Makasyuk, A. Bezryadina, and Z. Chen, "Dipole solitons in optically-induced two-dimensional photonic lattices,�?? Opt. Lett., 29, 1662 (2004). [CrossRef] [PubMed]
- J. Hudock, N. K. Efremidis, and D. N. Christodoulides, "Anisotropic diffraction and elliptic discrete solitons in two-dimensional waveguide arrays,�?? Opt. Lett. 29, 268 (2004). [CrossRef] [PubMed]
- D. N. Christodoulides, T. Coskun, M. Mitchell and M. Segev, "Theory of incoherent self-focusing in biased photorefractive media,�?? Phys. Rev. Lett. 78, 646 (1997). [CrossRef]
- M.J. Ablowitz and Z.H. Musslimani, "Discrete vector spatial solitons in a nonlinear waveguide array,�?? Phys. Rev. E 65, 056618 (2002). [CrossRef]
- J. Hudock, P. G. Kevrekidis, B. A. Malomed, and D. N. Christodoulides, "Discrete vector solitons in two-dimensional nonlinear waveguide arrays: Solutions, stability, and dynamics,�?? Phys. Rev. E 67, 056618 (2003). [CrossRef]
- J. Meier, J. Hudock, D.N. Christodoulides, G. Stegeman, Y. Silberberg, R. Morandotti, and J. S. Aitchison, "Discrete vector solitons in Kerr nonlinear waveguide arrays ". Phys. Rev. Lett. 91, 143907 (2003). [CrossRef] [PubMed]
- J. Yang, I. Makasyuk, A. Bezryadina, and Z. Chen, "Dipole and Quadrupole Solitons in Optically-induced Two-dimensional Photonic Lattices: Theory and Experiment,�?? Stud. Appl. Math. 113, 389 (2004). [CrossRef]
- P. G. Kevrekidis, A.R. Bishop, and K. Rasmussen, "Twisted localized modes,�?? Phys. Rev. E 63, 036603 (2001). [CrossRef]
- A.A. Sukhorukov and Y.S. Kivshar, "Spatial optical solitons in nonlinear photonic crystals,�?? Phys. Rev. E 65, 036609 (2002). [CrossRef]
- P.G. Kevrekidis, B.A. Malomed, A.R. Bishop, �??Bound states of two-dimensional solitons in the discrete nonlinear Schrodinger equation.�?? J. Phys. A 34, 9615 (2001). [CrossRef]
- S.R. Singh and D.N. Christodoulides, �??Evolution of spatial optical solitons in biased photorefractive media under steady state conditions,�?? Opt. Commun. 118, 569 (1995). [CrossRef]
- J. Yang, I. Makasyuk, H. Martin, P.G. Kevrekidis, B.A. Malomed, D.J. Frantzeskakis, and Z. Chen, "Necklace-like solitons in optically induced photonic lattices,�?? Phys. Rev. Lett, submitted.
- A. Smerzi, A. Trombettoni, P. G. Kevrekidis and A. R. Bishop, Dynamical superfluid-insulator transition in a chain of weakly coupled Bose-Einstein condensates,�?? Phys. Rev. Lett. 89, 170402 (2002). [CrossRef] [PubMed]
- Z, Chen, H. Martin, A. Bezryadina, D.N. Neshev, Y.S. Kivshar, and D.N. Christodoulides, "Experiments on Gaussian beams and vortices in optically-induced photonic lattices,�?? J. Opt. Soc. Am. B, to appear 2005. [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.