## Quantum key distribution system clocked at 2 GHz

Optics Express, Vol. 13, Issue 8, pp. 3015-3020 (2005)

http://dx.doi.org/10.1364/OPEX.13.003015

Acrobat PDF (127 KB)

### Abstract

An improved quantum key distribution test system operating at clock rates of up to 2GHz using a specially adapted commercially-available silicon single-photon counting module is presented. The use of an enhanced detector has improved the fiber-based quantum key distribution test system performance in terms of transmission distance and quantum bit error rate.

© 2004 Optical Society of America

## 1. Introduction

3. D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug & play system,” New J. Phys. **4**, 41.1–41.8 (2002). [CrossRef]

6. C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, “A step towards global key distribution,” Nature **419**, 450–450 (2002). [CrossRef] [PubMed]

7. K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, “A short wavelength gigahertz clocked fiber-optic quantum key distribution system,” IEEE J. Quantum Electron. **40**, 900–908 (2004). [CrossRef]

8. J.C. Bienfang, A.J. Gross, A. Mink, B.J. Hershman, A. Nakassis, X. Tang, R. Lu, D.H. Su, C.W. Clark, C.J. Williams, E.W. Hagley, and J. Wen, “Quantum key distribution with 1.25 Gbps clock synchronization,” Opt. Express **12**, 2011–2016 (2004). [CrossRef] [PubMed]

7. K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, “A short wavelength gigahertz clocked fiber-optic quantum key distribution system,” IEEE J. Quantum Electron. **40**, 900–908 (2004). [CrossRef]

7. K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, “A short wavelength gigahertz clocked fiber-optic quantum key distribution system,” IEEE J. Quantum Electron. **40**, 900–908 (2004). [CrossRef]

## 2. Description of the system

**40**, 900–908 (2004). [CrossRef]

8. J.C. Bienfang, A.J. Gross, A. Mink, B.J. Hershman, A. Nakassis, X. Tang, R. Lu, D.H. Su, C.W. Clark, C.J. Williams, E.W. Hagley, and J. Wen, “Quantum key distribution with 1.25 Gbps clock synchronization,” Opt. Express **12**, 2011–2016 (2004). [CrossRef] [PubMed]

10. P. D. Townsend, “Experimental investigation of the perfromance limits for first telecommunications-window quantum cryptography systems,” Photon. Technol. Lett. **10**, 1048–1050 (1998). [CrossRef]

^{8}photons per pulse) generated by a 1.3µm wavelength distributed feedback (DFB) laser, which were wavelength multiplexed into the fusion spliced transmission fiber connecting Alice and Bob. The two wavelengths were demultiplexed at Bob, and the 1.3µm wavelength pulses were detected by a linear gain germanium avalanche photodiode (APD), whose output was directed to the synchronization input of the photon-counting acquisition card. A bandpass filter (Δλ=30nm centered at 850nm) was inserted into the 850nm quantum channel in order to block any remaining 1.3µm wavelength light not removed by the demultiplexer, see Fig. 1. The encoded sequence of photons was randomly routed using a 1×2 splitter, and the polarization discriminated using an appropriately aligned polarizer in each channel.

## 3. Enhanced detector

12. I. Rech, I. Labanca, M. Ghioni, and S. Cova, “Circuit for improving the photon-timing performance of Single-Photon Counting Modules,” (submitted to) Rev. Sci. Instrum. [PubMed]

12. I. Rech, I. Labanca, M. Ghioni, and S. Cova, “Circuit for improving the photon-timing performance of Single-Photon Counting Modules,” (submitted to) Rev. Sci. Instrum. [PubMed]

13. A. Spinelli and A. L. Lacaita, “Physics and Numerical Simulation of Single Photon Avalanche Diodes”, IEEE Trans. Electron. Devices **44**, 1931–1943 (1997). [CrossRef]

^{-1}). At such rates it is important that the recovery to the baseline level after an avalanche pulse be fast and accurate. If slower tails affect this recovery, even with small amplitude, the superposition of such tails will cause both fluctuations and a systematic mean shift of the baseline level, which causes random fluctuations and shift of the triggering level along the pulse rise time. The corresponding effect on the measured photon arrival time causes a degradation of the FWHM value and a systematic shift of the centroid and of the peak of the photon timing distribution. These effects, which are significant with the original PKI circuit, are strongly reduced by the additional circuit card, as illustrated in Fig. 2 and Fig. 3. For example, at an incident count rate of 2Mcounts

^{-1}the modified device exhibits a jitter of ~450ps (FWHM), compared with ~950ps jitter prior to modification. Temporal broadening of the single-photon detector response has been shown to limit the performance of the QKD system [7

**40**, 900–908 (2004). [CrossRef]

**40**, 900–908 (2004). [CrossRef]

## 4. Quantum key distribution experimental results

14. G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. **85**, 1330–1333 (2000). [CrossRef] [PubMed]

**40**, 900–908 (2004). [CrossRef]

15. C. H. Bennett, G. Brassard, and J. M. Robert, “Privacy amplification by public discussion,” SIAM J. Comp , **17**, 210–229 (1988) [CrossRef]

^{-1}at a transmission distance of 6.55km.

16. M. Ghioni, S. D. Cova, A. Lacaita, and G. Ripamonti, “New silicon epitaxial avalanche diode for single-photon timing at room temperature,” Electron. Lett. **24**, 1476–1477 (1988). [CrossRef]

## 5. Conclusion

16. M. Ghioni, S. D. Cova, A. Lacaita, and G. Ripamonti, “New silicon epitaxial avalanche diode for single-photon timing at room temperature,” Electron. Lett. **24**, 1476–1477 (1988). [CrossRef]

## Acknowledgments

## References and links

1. | C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proc. Of IEEE Inter. Conf. on Computer Systems and Signal Processing, Bangalore, Kartarna, (Institute of Electrical and Electronics Engineers, New York, 1984), 175–179. |

2. | P.W. Shor and J. Preskill, “Simple Proof of Security of the BB84 Quantum Key Distribution Protocol,” Phys. Rev. Lett. |

3. | D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug & play system,” New J. Phys. |

4. | C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km of standard telecom fiber,” Appl. Phys. |

5. | J. G. Rarity, P. R. Tapster, and P. M. Gorman, “Practical free-space quantum key distribution over 10km in daylight and at night,” J. Mod. Phys. |

6. | C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, “A step towards global key distribution,” Nature |

7. | K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, “A short wavelength gigahertz clocked fiber-optic quantum key distribution system,” IEEE J. Quantum Electron. |

8. | J.C. Bienfang, A.J. Gross, A. Mink, B.J. Hershman, A. Nakassis, X. Tang, R. Lu, D.H. Su, C.W. Clark, C.J. Williams, E.W. Hagley, and J. Wen, “Quantum key distribution with 1.25 Gbps clock synchronization,” Opt. Express |

9. | C.H. Bennett, “Quantum Cryptography Using Any Two Nonorthogonal States,” Phys. Rev. Lett. |

10. | P. D. Townsend, “Experimental investigation of the perfromance limits for first telecommunications-window quantum cryptography systems,” Photon. Technol. Lett. |

11. | S. D. Cova, M. Ghioni, and F. Zappa, “Circuit for high precision detection of the time of arrival of photons falling on single photon avalanche diodes,” US pat. 6,384,663 B2, May 7, 2002; (prior. 9 March 2000) |

12. | I. Rech, I. Labanca, M. Ghioni, and S. Cova, “Circuit for improving the photon-timing performance of Single-Photon Counting Modules,” (submitted to) Rev. Sci. Instrum. [PubMed] |

13. | A. Spinelli and A. L. Lacaita, “Physics and Numerical Simulation of Single Photon Avalanche Diodes”, IEEE Trans. Electron. Devices |

14. | G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. |

15. | C. H. Bennett, G. Brassard, and J. M. Robert, “Privacy amplification by public discussion,” SIAM J. Comp , |

16. | M. Ghioni, S. D. Cova, A. Lacaita, and G. Ripamonti, “New silicon epitaxial avalanche diode for single-photon timing at room temperature,” Electron. Lett. |

**OCIS Codes**

(030.5260) Coherence and statistical optics : Photon counting

(060.0060) Fiber optics and optical communications : Fiber optics and optical communications

**ToC Category:**

Research Papers

**History**

Original Manuscript: December 17, 2004

Revised Manuscript: March 31, 2005

Published: April 18, 2005

**Citation**

Karen Gordon, Veronica Fernandez, Gerald Buller, Ivan Rech, Sergio Cova, and Paul Townsend, "Quantum key distribution system clocked at 2 GHz," Opt. Express **13**, 3015-3020 (2005)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-8-3015

Sort: Journal | Reset

### References

- C. H. Bennett and G. Brassard, �??Quantum cryptography: Public key distribution and coin tossing,�?? in Proc. Of IEEE Inter. Conf. on Computer Systems and Signal Processing, Bangalore, Kartarna, (Institute of Electrical and Electronics Engineers, New York, 1984), 175-179.
- P.W. Shor and J. Preskill, �??Simple Proof of Security of the BB84 Quantum Key Distribution Protocol,�?? Phys. Rev. Lett. 85, 441-444 (2000). [CrossRef] [PubMed]
- D. Stucki, N. Gisin, O. Guinnard, G. Ribordy and H. Zbinden, �??Quantum key distribution over 67 km with a plug & play system,�?? New J. Phys. 4, 41.1-41.8 (2002). [CrossRef]
- C. Gobby, Z. L. Yuan and A. J. Shields, �??Quantum key distribution over 122 km of standard telecom fiber,�?? Appl. Phys. 84, 3762-3764 (2004).
- J. G. Rarity, P. R. Tapster and P. M. Gorman, �??Practical free-space quantum key distribution over 10km in daylight and at night,�?? J. Mod. Phys. 48, 1887-1901 (2001).
- C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster and J. G. Rarity, �??A step towards global key distribution,�?? Nature 419, 450-450 (2002). [CrossRef] [PubMed]
- K. J. Gordon, V. Fernandez, P. D. Townsend and G. S. Buller, �??A short wavelength gigahertz clocked fiberoptic quantum key distribution system,�?? IEEE J. Quantum Electron. 40, 900-908 (2004). [CrossRef]
- J. C. Bienfang, A. J. Gross, A. Mink, B. J. Hershman, A. Nakassis, X. Tang, R. Lu, D. H. Su, C. W. Clark, C. J. Williams, E. W. Hagley, and J. Wen, �??Quantum key distribution with 1.25 Gbps clock synchronization,�?? Opt. Express 12, 2011-2016 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-2011">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-2011</a>. [CrossRef] [PubMed]
- C.H. Bennett, �??Quantum Cryptography Using Any Two Nonorthogonal States,�?? Phys. Rev. Lett. 68, 3121-3124 (1992). [CrossRef] [PubMed]
- P. D. Townsend, �??Experimental investigation of the perfromance limits for first telecommunications-window quantum cryptography systems,�?? Photon. Technol. Lett. 10, 1048-1050 (1998). [CrossRef]
- S. D. Cova, M. Ghioni, F. Zappa, �??Circuit for high precision detection of the time of arrival of photons falling on single photon avalanche diodes,�?? US pat. 6,384,663 B2, May 7, 2002; (prior. 9 March 2000).
- I. Rech, I. Labanca, M. Ghioni, S. Cova, �??Circuit for improving the photon-timing performance of Single-Photon Counting Modules,�?? (submitted to) Rev. Sci. Instrum. [PubMed]
- A. Spinelli, A. L. Lacaita, "Physics and Numerical Simulation of Single Photon Avalanche Diodes," IEEE Trans. Electron. Devices 44, 1931-1943 (1997). [CrossRef]
- G. Brassard, N. Lütkenhaus, T. Mor and B. C. Sanders, �??Limitations on practical quantum cryptography,�?? Phys. Rev. Lett. 85, 1330-1333 (2000). [CrossRef] [PubMed]
- C. H. Bennett, G. Brassard, J. M. Robert, �??Privacy amplification by public discussion,�?? SIAM J. Comp, 17, 210-229 (1988). [CrossRef]
- M. Ghioni, S. D. Cova, A. Lacaita and G. Ripamonti, �??New silicon epitaxial avalanche diode for single-photon timing at room temperature,�?? Electron. Lett. 24, 1476-1477 (1988). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.