OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 23 — Nov. 13, 2006
  • pp: 11164–11177
« Show journal navigation

Doubly negative metamaterials in the near infrared and visible regimes based on thin film nanocomposites

Vitaliy Lomakin, Yeshaiahu Fainman, Yaroslav Urzhumov, and Gennady Shvets  »View Author Affiliations


Optics Express, Vol. 14, Issue 23, pp. 11164-11177 (2006)
http://dx.doi.org/10.1364/OE.14.011164


View Full Text Article

Acrobat PDF (1136 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An optical metamaterial characterized simultaneously by negative permittivity and permeability, viz. doubly negative metamaterial (DNM), that comprises deeply subwavelength unit cells is introduced. The DNM can operate in the near infrared and visible spectra and can be manufactured using standard nanofabrication methods with compatible materials. The DNM”s unit cell comprise a continuous optically thin metal film sandwiched between two identical optically thin metal strips separated by a small distance form the film. The incorporation of the middle thin metal film avoids limitations of metamaterials comprised of arrays of paired wires/strips/patches to operate for large wavelength / unit cell ratios. A cavity model, which is a modification of the conventional patch antenna cavity model, is developed to elucidate the structure”s electromagnetic properties. A novel procedure for extracting the effective permittivity and permeability is developed for an arbitrary incident angle and those parameters were shown to be nearly angle-independent. Extensions of the presented two dimensional structure to three dimensions by using square patches are straightforward and will enable more isotropic DNMs.

© 2006 Optical Society of America

1. Introduction

Metamaterials are artificial composite materials that possess electromagnetic properties that are not found in natural environments. Doubly negative metamaterials (DNM) are metamaterials that are characterized by permeability, permittivity, and index of refraction simultaneously having negative real parts [1

1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ϵ and &mu,” Soviet Physics - Uspekhi 10, 509–514 (1968). [CrossRef]

]. Due to their unique electromagnetic properties, DNMs have a number of important potential applications including the construction of perfect lenses, transmission lines, and antennas [2–7

2. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef] [PubMed]

].

First practical realizations of DNM were introduced in the microwave and then terahertz regimes [8–12

8. Z. Jiangfeng, T. Koschny, Z. Lei, G. Tuttle, and C. M. Soukoulis, “Experimental demonstration of negative index of refraction,” Appl. Phys. Lett. 88, 221103-221101 (2006). [CrossRef]

]. For example, microwave and terahertz DNMs were constructed from periodic unit cells comprising split ring resonators and straight wires [10

10. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001). [CrossRef] [PubMed]

]. In these DNMs the split ring resonators and wires support strong magnetic and electric resonance that result in frequency bands of negative permittivity and permeability that can be tuned to overlap. Extending the operational spectrum of DNMs to optical frequencies is an important ongoing task among physical and engineering communities.

However, realizations of DNMs in the optical and, especially, near-infrared (IR) and visible spectra are challenging. For instance, it has been demonstrated that scaling of the split ring resonator based metamaterials to the visible regime fails for realistic metals due to the saturation of the magnetic resonance frequency and increased loss[13

13. J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902-223901 (2005). [CrossRef] [PubMed]

]. Recently, several structures have been suggested to operate as DNMs in the optical regime [12

12. Z. Shuang, F. Wenjun, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94, 037402-037401 (2005). [CrossRef]

, 14–16

14. V. M. Shalaev, C. Wenshan, U. K. Chettiar, Y. Hsiao-Kuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358 (2005). [CrossRef]

]. These optical DNMs can be classified into two types. One type incorporates arrays of plasmonic rods [17

17. G. Shvets and Y. A. Urzhumov, “Engineering the electromagnetic properties of periodic nanostructures using electrostatic resonances,” Phys. Rev. Lett. 93, 243902-243901 (2004). [CrossRef]

] or spheres [18

18. A. Alu, A. Salandrino, and N. Engheta, “Negative effective permeability and left-handed materials at optical frequencies,” Opt. Express 14, 1557 (2006). [CrossRef] [PubMed]

] of subwavelength size to construct two- and three-dimensional DNMs. The operation of these structures is based on the existence of quasi-static resonances supported by subwavelength particles when the frequency of operation approaches the plasma frequency of the particles in the ambient environment. Unfortunately, due to this property, such DNMs will not operate in spectral ranges extended to near-IR. Moreover, these designs may lead to excessively high losses for realistic materials and cannot be easily realized using standard nanofabrication techniques. The second type of optical DNMs represents several variations of pairs of patterned thin metal films, including arrays of paired wires, paired strips, staples, and paired perforated plates [11

11. G. Shvets and Y. Urzhumov, “Negative index meta-materials based on two-dimensional metallic structures,” J. Opt. A 8, S122 (2006). [CrossRef]

, 12

12. Z. Shuang, F. Wenjun, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94, 037402-037401 (2005). [CrossRef]

, 14–16

14. V. M. Shalaev, C. Wenshan, U. K. Chettiar, Y. Hsiao-Kuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358 (2005). [CrossRef]

]. The operation of these structures is based on the existence of plasmonic resonances of magnetic and electric type supported by cavities formed between the pairs of particles. These structures allow a greater flexibility in tuning their electromagnetic properties and they can be manufactured using standard nanofabrication techniques. However, none of these structures were shown to operate in a wide spectral range from near-IR to visible. Moreover, all these structures comprise unit cells that are only marginally subwavelength (with the wavelength / unit cell size ratio being around 2.5 in vacuum) when the frequency of operation is in the near-IR or visible parts of the spectrum. For instance, it was shown that arrays of paired thin metal strips (and, hence, arrays of paired wires and patches) cannot support overlapping frequency bands of magnetic and electric resonances when the wavelength / unit cell size ratio is large [11

11. G. Shvets and Y. Urzhumov, “Negative index meta-materials based on two-dimensional metallic structures,” J. Opt. A 8, S122 (2006). [CrossRef]

]. This restriction represents a major limitation of the use of these structures as true DNMs. Indeed, it is well known that a structure can be regarded as a homogeneous DNM only when its unit cell is much smaller than the wavelength of operation scaled to the effective index of refraction. Otherwise, the diffraction phenomena will dominate the DNM behavior.

In this manuscript we introduce a novel DNM structure that modifies the structures based on arrays of paired thin metal strips or rods [11

11. G. Shvets and Y. Urzhumov, “Negative index meta-materials based on two-dimensional metallic structures,” J. Opt. A 8, S122 (2006). [CrossRef]

, 14

14. V. M. Shalaev, C. Wenshan, U. K. Chettiar, Y. Hsiao-Kuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358 (2005). [CrossRef]

] by adding a thin metal film in the middle plane between the strips. We show that this simple modification entirely avoids the limitations of the original paired strip structure (paired wire and paired patch structures) [11

11. G. Shvets and Y. Urzhumov, “Negative index meta-materials based on two-dimensional metallic structures,” J. Opt. A 8, S122 (2006). [CrossRef]

]. The introduced structure provides the following unique properties and features: (i) tunable operation in a wide optical spectral range from near-IR to visible, (ii) true metamaterial design consisting of a periodic unit cells of size much smaller than the effective wavelength of operation, and (iii) design compatible with standard nanofabrication techniques. The introduced DNM structure is modeled analytically and numerically to elucidate the physics behind its operation as well as to provide simple means to tune its effective permittivity, permeability, and index of refraction.

2. Layout of the unit cell

Consider an inhomogeneous nanocomposite DNM consisting of a periodic array of unit cells as shown in Fig. 1. The unit cells are arranged periodically in the x and z directions with periods Lx and Lz , respectively. The structure comprises a finite number of ml layers in the z direction and an infinite number of unit cells in the x direction. Every layer comprises an infinite metal film of thickness df and an infinite array of metal strips of width w and thickness ds (Fig. 1). In the z dimension, the strips are arranged in pairs symmetrically with respect to the unit cell’s symmetry plane (z=0). The distance between the bottom face of the top strip and the top face of the bottom strip is 2h. The structure is uniform in the y dimension. The strips and the film are assumed to be made of an identical metal characterized by a relative permittivity εm with Re{εm }<0 in the optical frequency regime (e.g. silver or gold). It is assumed that ds , df , h, Lx and Lz are much smaller than the (free-space) wavelength of illumination λ to assure that the unit cells’ geometry is much smaller than the effective wavelength of the incident radiation. In addition, ds , df are assumed to be smaller than w such that possible charge and current distribution variations in the strips and film occur primarily in the horizontal (x) dimension. The whole metallic structure is embedded into a dielectric material with permittivity εd of a total thickness H=ml Lz . A harmonic time dependence ej2πft of the optical field is assumed and suppressed in what follows. Here, f=c/λ is the frequency of illumination and c is the speed of light in vacuum.

Fig. 1. Structure’s unit cell

As is shown below, the presence of the middle metal film avoids the limitations of the double-strip (double wire or patch) structure in achieving simultaneously negative effective permeability and permittivity in deeply subwavelength optical regime [11

11. G. Shvets and Y. Urzhumov, “Negative index meta-materials based on two-dimensional metallic structures,” J. Opt. A 8, S122 (2006). [CrossRef]

]. Moreover, it will be shown that for a TM polarization (magnetic field being along the y axis) and for special combinations of the structures’ parameters and frequency of illumination, the structure in Fig. 1 is equivalent to a slab made of a DNM characterized simultaneously by negative real parts of the effective permittivity, permeability, and index of refraction. It is noted that the introduced array of strips is a 2D counterpart of a 3D structure comprising doubly periodic arrays of rectangular/square patches and therefore the results presented here are directly extendable to more general 3D configurations leading to e DNMs with properties nearly independent of light polarization and plane of incidence.

3. Optical properties of DNM structures

3.1 Cavity model

The structure in Fig. 1 can be viewed as a periodic array of cavities formed in the volumes between the strips that support resonances, viz. source-free fields. Understanding the behavior of these resonances is essential for unraveling the structure’s optical properties. To describe the cavity resonances, the cavity model [19

19. J. R. James and P. S. Hall, Handbook of Microstrip Antennas (1988).

] successfully used in the analysis of patch antennas can be modified to take into account the penetration of the fields through the thin metal films. This model is introduced in two steps considering a single unit cell. In the first step, anticipating that the resonance fields are concentrated primarily between the strips, the region |x|<w2 is closed by (virtual) vertical perfect magnetically conducting walls (Fig. 2). In the second step, the optically thin top and bottom metal strips and the central metal film are replaced by thin (inductive) admittance sheets characterized by normalized surface admittances Ystrips=jk 0(εm -1)ds at zh and Ysfilm=jk 0(εm -1)df at z=0, respectively [20

20. C. A. Balanis, Antenna Theory: Analysis and Design, Third Edition ed. (John Wiley, 2005).

]; k 0=2π/λ is the free space wavenumber. Due to its symmetry around z=0, the resulting simplified cavity supports resonances for which magnetic field has either even or odd parity with respect to the z=0 plane.

Fig. 2. Equivalent modified cavity used to model the cavity in Fig. 1.

3.2 Magnetic resonances

Ysstrip+Yz(1jcotkzh)=0,
(1)

where kz=(2πfmagnc)2εd(πqw)2 and Yz=2πfmagnεd(ckz) . It is evident from Eq. 1 that when |Ysstrip| is large, occurring when the product |(εm -1)ds | is large, then |cotkzh| should be large and as a result magnetic resonance frequencies, fmagncq(2wεd) , are approximately frequencies of simple patch antenna resonances. However, when the product |(εm -1)ds | is finite/small, f magn can be made much smaller than the simple path antenna resonances, which is the crucial point in achieving a subwavelength DNM operation. To obtain an approximate expression for f magn in this regime, it is assumed that |kzh|«1, 2πfmagnεdcπqw , and εm (f) is given by an approximate lossless Drude model εm (f)≈-fp2/f 2, where fp is the metal plasma frequency. Based on these assumptions,

fmagnfpπqdshεdw2.
(2)

This expression shows that the structure in Fig. 1 supports magnetic resonances even when the cavity has a subwavelength size. Moreover, Eq. (2) shows that the resonant frequency no longer depends solely on the length of the structure (as it is the case with simple antenna resonances) but rather it is determined by the shape and the material properties [21

21. A. K. Sarychev, G. Shvets, and V. M. Shalaev, “Magnetic Plasmon Resonance,” Phys. Rev. E 73, 036609 (2006). [CrossRef]

] of the composites. The physical reason for this is that the fields inside the cavity are essentially quasistatic and can be described to the zero order approximation by either electrostatic potential ϕi (E⃗=-∇⃗ϕi ) or by the stream function Ψi (E⃗=ey×∇⃗Ψi ) [17

17. G. Shvets and Y. A. Urzhumov, “Engineering the electromagnetic properties of periodic nanostructures using electrostatic resonances,” Phys. Rev. Lett. 93, 243902-243901 (2004). [CrossRef]

], which are proportional to the magnetic field strength A used above. Therefore, properties of such sub-wavelength structures are essentially scale-invariant.

3.3 Electric resonances

Ysstrip+Yz+YzYsfilm+j2Yztankzh2Yz+jYsfilmtankzh=0.
(3)

Analytical and numerical investigation of Eq. (3) shows that it has two solutions felec(i) (i=1, 2) that are frequencies of the electric resonances for each value of the integer q. By setting Re{felect(1)}<Re{felect(2)}, it is found that Re{felectr(1)}<Re{felectr(2)}. Moreover, with |Ysfilm|«1, the following inequality Re{felect(2)}»Re{f magn} holds. As |Ysfilm| increases, Re{felect(2)} decreases towards Re{f magn}, and in the limit felect(2)f magn as |Ysfilm|∞. Such behavior of felect(2) allows the electric and magnetic resonances to overlap in the same frequency range by simply modifying df .

3.4 Model for effective parameters

Recalling that the unit cell size of the structure in Fig. 1 is subwavelength, the structure can be described by its effective permeability and permittivity [22

22. W.J Padilla, D.R Smith, and D.N Basov, “Spectroscopy of metamaterials from infrared to optical frequencies,” J. Opt. Society America B 23, 404 (2006). [CrossRef]

]. Due to the structural geometry, the effective parameters are expected to be anisotropic and can be characterized by diagonal permeability and permittivity tensors µ̳eff and ε̳eff. For the TM excitation considered in the paper, the relevant tensor components affecting the structure’s electromagnetic properties are µ eff,yy, ε eff,xx, and ε eff,zz. As shown below, by judicious choice of parameters, simultaneously negative permeability and permittivity can be achieved for finite frequency bandwidths. Interactions of the magnetic and electric resonances with an external field can be described by the existence of effective magnetic and electric dipole moments, m(f)=m 0/(f-fm )ŷ, and p (i)(f)=p0(i)/(f-felect(i)), respectively, where m 0 and p0(i) are constants determining the strength of the excitation. Based on this understanding, the effective parameters can be written as

μeff,yy=μ0,eff,yyfp,magn,yyffmagn,εeff,ii=ε0,eff,iifp,elect,ii(1)ffelect(1)fp,elect,ii(2)ffelect(2),
(4)

where ii=xx or zz. The effective parameters in (4) comprise non-resonant components µ 0,eff,yy and ε 0,eff,ii and resonant components described by the resonance frequencies f magn and felect(i) together with constants f p,magn,yy and fp,elect,ii(i) determined by the resonance excitation strengths. The resonance excitation strength may depend on the frequency and the angle and it may be different for ii=xx and zz (see further discussions in Sec. 4.1).

It is noted that an alternative expression for ε eff,ii can be derived rigorously based on quasi-static approximation, εqs (f)=ed (1-F 0/si Fi /(s-si )), where s(f)=(1-εm (f)/εd )-1, and si are the eigenvalues of the differential equation ∇(θ(r)∇ϕi (r))=si2 ϕi (r). Here ϕi are the zero order scalar potential distributions in the nanostructure, and θ(r) is the Heaviside function equal to unity when r is inside the metal and zero when r is outside of the metal. Contributions of different quasi-static resonances are weighted by their strengths Fi that are determined numerically from the functional form of ϕi (r) [23

23. D. J. Bergman and D. Stroud, “Properties of Macroscopically Inhomogeneous Media,” Solid State Phys. 46, 147 (1992). [CrossRef]

].

Finally, it is noted that the higher frequency electric resonance, associated with felectr(2), is similar to the electric resonance supported by paired-strip, paired-patch, and paired-wire structures. Unfortunately, since felectr(2) cannot be tuned to be close to f magn (at least for the same resonance order q), these structures cannot operate as NIMs. This is the middle film that provides the existence of the lower frequency tunable resonance with felectr(1) and allows for the NIM operation. It also should be noted that the location of the continuous film in the middle plane between the strips is critical for proper NIM operation. Displacing the film to a different location may corrupt the NIM operation significantly as the even and odd resonances become combined resonances so that the electric and magnetic responses affect each other.

4. Numerical study

4.1 Extraction of the effective parameters

The effective permeability, permittivity, and index of refraction can be obtained by calculating/measuring the structure’s zeroth order scattering (reflection and transmission) coefficients and matching appropriate effective parameters. This procedure was presented by Smith et al [24

24. D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002). [CrossRef]

] to extract effective parameters assuming normally incident plane waves. Here, this approach is generalized to take into account oblique incident angles and anisotropic medium effective parameters.

The zeroth order TM reflection and transmission coefficients for a field incident at an angle θ on a slab of thickness H made of isotropic or uniaxially anisotropic material can be written as

T=(cos(k0nz,effH)+j2(Zz,effcosθ+cosθZz,eff)sin(k0nz,effH))1,
R=j2(Zz,effcosθ+cosθZz,eff)sin(k0nz,effH)T,
(5)

where n z,eff is effective index for the field propagating in the z direction, and Z z,eff is the corresponding normalized impedance defined as the ratio between tangential components of the electric and magnetic fields in the x-y plane. From Eq. (5), n z,eff and Z z,eff are found as

nz,eff=(cos1(1(R2T2)2T)+2πl)(k0H)1,
Zz,eff=cosθ(1R2)T2(1R2)T2.
(6)

where l is an integer that is chosen as described by Smith at al [24

24. D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002). [CrossRef]

]. In contrast, assuming that the effective medium is anisotropic and recalling that the field is TM polarized, i.e. that the field in the slab is of extraordinary type, the quantities n z,eff and Z z,eff also satisfy

nz,eff=(μeff,yyεeff,xxsin2θεeff,zz)12,
Zz,eff=nz,effεeff,xx,
(7)

Eq. (7) with the expressions of Eq. (6), can be used to find the other effective parameters. However, it is evident that there are more equations than unknowns so that an additional relation between µ eff,yy, ε eff,xx, and ε eff,zz has to be imposed. Different relations would lead to different results for the effective parameters (but all of them would result in the same structure’s scattering properties). In this paper, we choose a semi-empirical assumption that ε eff,zz is a positive constant that is chosen further as εd . This assumption is based on the observation that the metal films/strips all are arranged along (x-y) planes so that the field components along the z axis are weakly affected by the presented resonances so that the excitation constants fp,elect,zz(i) in Eq. (4) are weak. In addition, this assumption is based on the fact that ε eff,zz extracted by assuming static fields is nearly constant in the range of interest. Based on this assumption the effective parameters µ eff,yy and ε eff,xx are found as

εeff,xx=nz,effZz,eff,
μeff,yy=nz,effZz,eff+sin2θεeff,zz,
(8)

where nz ,eff and Z z,eff are given by Eq. (6) and ε eff,zz=εd . In the remaining part of the manuscript we use the following notations: µ eff=µ eff,yy, ε eff=ε eff,xx, n eff=(µ eff ε eff)1/2.

4.2 Numerical simulations

To demonstrate the operation of the structure in Fig. 1 and validate the presented analytic model we performed a series of numerical simulations using the full wave rigorous coupled wave analysis [25

25. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995). [CrossRef]

, 26

26. P. Lalanne, “Improved formulation of the coupled-wave method for two-dimensional gratings,” J. Opt. Soc. Am. A 14, 1592–1598 (1997). [CrossRef]

] and finite elements method [27

27. J. Jin, The Finite Elements Method in Electromagnetics, Second Edition (Wiley, New York, 2002).

]. In all simulations we used SiO2 as an embedding dielectric with the dielectric constant value of εd =2.25. The metal was assumed to be gold with εm given by the Drude model εm =1-fp2/(f(f-jΓ)), where fp is the plasma frequency and Γ is the scattering frequency characterizing the dissipation rate in the metal. Following Ref. [16

16. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006). [CrossRef] [PubMed]

], we used fp =1.32×104/(2π)THz and Γ=1.2×102(2π)THz.

Fig. 3. Dependence of the structures scattering coefficients and effective properties on the middle film thickness. The structure’s parameters are chosen as Lx =100nm, w=50nm, ds =15nm for three values of the strip-symmetry plane separation and film thickness being h=7nm and df =0 (Lz =44.5nm), h=10.25 nm and df =6.5nm (Lz =50.5nm), as well as h=11.25 nm and df =8.5nm (Lz =52.5nm). (a): magnitude of the zeroth order transmission coefficient |T 0|; (b): effective permeability µ eff; (c) effective permittivity ε eff. For df =0, i.e. in the absence of the middle film, only a single magnetic (longer wavelength) and electric (lower wavelength) resonances are obtained; the resonances manifest themselves as minima in the transmission coefficient magnitude dependence. For d ≠ ⁠0, i.e. in the presence of the middle film, one magnetic are obtained in the wavelength range between two electric resonances. Associated with the magnetic resonance and longer wavelength electric resonance are bands of negative Re{µ eff} and Re{ε eff}, respectively. The bands are more separated for df =6.5nm and overlap for df =8.5nm thus resulting in a DNM.

Figure 3(a) shows the magnitudes of the structure’s normal transmission coefficient T 0 for a single layer (ml =1) in the absence of the middle slab for h=7nm, df =0, Lz =44.5nm and in the presence of the middle slab for h=10.25nm, df =6.5nm Lz =50.5nm as well as for h=11.25nm, df =8.5nm, Lz =52.5nm. Other structure’s parameters were chosen as Lx =100nm, w=50nm, ds =15nm. In the absence of the central film, two non-overlapping electric and magnetic resonances are obtained for λ=350nm and 600nm, respectively. In the presence of the middle film, for smaller film thickness (df =6.5nm), three separate resonance dips are observed around λ=435nm and λ=640nm, and λ=800nm corresponding to electric, magnetic, and electric resonances, respectively. As df increases the two longer wavelength (magnetic and electric) resonances approach each other and they almost merge around λ=680nm for df =8.5nm. The longer wavelength resonance for df =0 and the middle resonance for df ⁠0 in Fig. 3(a) correspond to bands of negative Re{µ eff} in Fig. 3(b). The longest wavelength resonances for df ⁠ 0 in Fig. 3(a) correspond to bands with negative Re{ε eff} in Fig. 3(c). From the obtained results it is evident that in agreement with Shvets and Urzhumov [11

11. G. Shvets and Y. Urzhumov, “Negative index meta-materials based on two-dimensional metallic structures,” J. Opt. A 8, S122 (2006). [CrossRef]

], no simultaneous bands of negative Re{µ eff} and Re{ε eff} are obtained when the middle slab is absent. However, as predicted by the model and analysis described above, introducing the middle layer of thin metal film at z=0 causes simultaneously overlapping bands of negative Re{µ eff} and Re{ε eff} as required to construct a DNM. This is because Re{ε eff} tends to be negative between the two electric resonance frequencies.

To better understand the nature of the resonances in Fig. 3(a) leading to negative Re{µ eff} and Re{ε eff} in Fig. 3(b), we calculated the field distributions assuming static approximation. Figures 4(a) and 4(b) show the field distribution corresponding to magnetic and electric resonances within the cavity with the same parameters as those used in Fig. 3(a) for df =6.5nm and for λ=640nm and λ=800nm. It is observed that the fields for the middle and longer wavelength resonances exhibit even and odd symmetries with respect to the z=0 plane. These symmetries explain the presence of the effective magnetic and electric dipoles and hence negative Re{µ eff} and Re{ε eff}, respectively. From the results in Figs. 3 and 4 it is evident that the structure in Fig. 1 indeed can operate as a DNM having a deeply subwavelength unit cell with a wavelength-to-period ratio of about 7, and that the cavity model predictions are valid.

Fig. 4. Electric field distribution corresponding to (a) magnetic resonance and (b) electric resonances. The field distribution was obtained assuming static approximation and assuming that SiO2 (εd =2.25) occupies the entire space.

To verify that the phenomena leading to DNM operation are quasi-static in their physical nature, we have plotted in Fig. 5 the effective permittivity obtained via two methods: extracting from scattering coefficient as described in Sec. 4.1, and using a quasi-static expression given after Eq. (4). It is evident that the quasi-static approximation captures the behavior of ε eff very well. Note that the position of the resonance extracted from fully electromagnetic simulations is red shifted form its electrostatic value because of the finite retardation effects proportional to (L/λ)2 [28

28. I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B 72, 155412 (2005). [CrossRef]

].

Fig. 5. Comparison between the quasi-static dielectric permittivity εqs(ω)=1f0sifi(ssi) (where s(ω)=(1-εm (ω)/εd )-1 and εm is the dielectric permittivity of gold) and the extracted from fully can electromagnetic simulations ε eff(ω) as described in Sec. 4.1.

Figure 6 shows that the structure in Fig. 1 can be tuned to operate as a DNM in the entire range from near-IR to visible by depicting Re{n eff} and Im{n eff} for three sets of structure parameters (i. e., set 1, 2 and 3), resulting in DNM operation in three wavelength ranges 820nm<λ<1040nm, 550nm<λ<670nm, and 500nm<λ<560nm. Additional simulations confirm that DNM operation can be obtained in the entire range from 450nm to 1800 nm with wavelength-to-period ratios of about 7 and with sufficiently low loss. Notice, that the wavelength-to- period ratio can be further increased, but on the expense of increased losses.

Losses of the proposed DNMs are illustrated by Fig. 7, where the ratios Re{n eff}Im{n eff} are plotted. Three DNM structures are considered: one embedded in a passive dielectric and two embedded in a dielectric with gain. Geometrical parameters of the DNMs are listed in the caption, and gain coefficients correspond to Im{εd }=0.03 and Im{εd }=0.06. The considered values of Im{εd } correspond to gain coefficient of 1500cm-1 and 3000cm-1, respectively. Such values of the gain coefficient can be achieved by semiconductor polymers or laser dyes [29

29. N. M. Lawandy, “Localized surface plasmon singularities in amplifying media,” Appl. Phys. Lett. 85, 5040 (2004). [CrossRef]

, 30

30. F. Hide, B. J. Schwartz, M. A. Diaz-Garcia, and A. J. Heeger, “Conjugated polymers as solid state laser materials,” Synth. Met. 91, 35 (1997). [CrossRef]

]. These parameters were chosen to demonstrate a possibility to improve the DNM operation by means of active materials. It is seen that the largest ratio Re{n eff}/Im{n eff} is obtained for λ=620 nm in all three cases with larger ratios corresponding to larger gains. From these results we learn that for passive structures the losses are reasonably low thus allowing practical applications of the suggested DNM. It is also evident that the loss can be reduced significantly by incorporating active materials with modest gain. Evidently, the loss is modest even without active medium, and is further reduced by modest gain.

Figure 8 depicts the extracted Re{n eff} for the structure parameters as those in Fig. 3 with df =8.5nm for different number of layers ml to demonstrate that the structure can operate as a bulky material. It is evident that while Re{n eff} slightly changes as the number of layers increases, it is reliably negative in the range 600nm<λ<680nm for any ml .

Fig. 6. Effective index of refraction neff for different sets of parameters for a single DNM layer.
Set 1: Lx =150nm, Lz =52nm, w=90nm, dz =15nm, df =8nm, h=11nm; Set 2: Lx =100nm, Lz =52.5nm, w=50nm, ds =15nm, df =8.5nm, h=11.25nm; and Set 3: Lx =100nm, Lz =57nm, w=40nm, ds =15nm, df =10nm, h=13.5nm. It is evident that the structure can be tuned to operate as a DNM in the range from near-IR to entire visible spectra and this is with wavelength / periodicity ratio being around 7, i.e. in deeply subwavelength regime.
Fig. 7. The ratio Re{n eff}/Im{n eff} characterizing the losses in the system as a function of the gain (Im{εd }) in the dielectric layer for a single DNM layer. The structure parameters are chosen as Lx =100nm, Lz =51.5nm, w=50nm, ds =15nm, df =7.5nm, h=10.75nm. It is evident that the loss is not high without any gain and it further improves significantly by increasing the gain; the required values of gain correspond to practically achievable values.
Fig. 8. The effective index of refraction for different number of layers ml . The structure parameters are chosen as Lx =100nm, Lz =102.5nm, w=50nm, ds =15nm, df =8.5nm, h=11.25nm. DNM operation with stable negative index in the range 640nm–680nm.
Fig. 9. The real part of effective parameters µ eff and ε eff for different angles of incidence for a single DNM layer. The structure parameters are chosen as Lx =100nm, Lx =52.5nm, w=50nm, ds =15nm, df =8.5nm, h=11.25nm. DNM operation is obtained over a wide range of incident angles.

Figure 9 shows the wavelength dependence of Re{µ eff} and Re{ε eff} for different values of the incident angle θ; the structure parameters are given in the figure caption. It is observed that negative Re{µ eff} and Re{ε eff} simultaneously are obtained for all angles with some angular dependence. While further studies are required to eliminate the obtained angular dependence, still the obtained results, to the best of authors’ knowledge, are the only results currently available showing subwavelength unit cell DNMs performance in a wide angular range in the optical (near-IR/visible) regimes. We note that µ eff exhibits a much weaker (almost negligible) variation with θ than ε eff.

Finally, we note that the value of the scattering frequency Γ in the Drude model in all simulations above is more than 3 times larger as compared to values assumed for simulations in some other recent works (e.g. [15

15. Z. Shuang, F. Wenjun, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404-137401 (2005). [CrossRef]

, 18

18. A. Alu, A. Salandrino, and N. Engheta, “Negative effective permeability and left-handed materials at optical frequencies,” Opt. Express 14, 1557 (2006). [CrossRef] [PubMed]

]). Fortunately, as is evident from the demonstrated results, the structure in Fig. 1 performs very well even with these parameters. It should be emphasized that reducing the value of Γ by the factor of 3 results in a drastic improvement of the DNM performance in terms of decrease of dissipation and increase of achievable values of µ eff even without introducing any gain medium.

5. Summary

A novel realization of a DNM comprising unit cells of deeply subwavelength size was introduced. The DNM can be tuned to operate over a wide bandwidth of the optical spectrum from near-IR to visible and can be manufactured using standard nanofabrication methods with materials compatible with these methods.

The DNM is composed of unit cells each comprising a continuous optically thin metal film sandwiched between two identical thin metal strips separated by a small distance from the film. The region between the metal strips operates as a nano-scale subwavelength cavity. To elucidate the electromagnetic properties of the structure a modified cavity model was developed. In this model, the perfect magnetically conducting boundary conditions are imposed on the side walls of the cavity. The thin metal film and strips are approximated by infinitesimally thin impedance sheets. It was shown that the cavities support both magnetic and electric resonances that can be tuned to occur in overlapping frequency bends. It was further shown that the crucial role in the ability to achieve DNM operation is played by the presence of the middle film that enables tuning the electric resonances independently from the magnetic ones.

Extensions of the presented 2D structure to 3D by using patches instead of strips are straightforward and will allow for constructing DNMs with effective parameters independent on the incident plane and wave polarization. These extensions will be presented in the forthcoming publications. The aforementioned ideas and model can also be incorporated with other configurations to allow their DNM operation in the near-IR and visible parts of the spectrum. The presented structure and ideas are anticipated to allow for a number of important applications in physics and engineering, such as the development of super lenses and other subwavelength optical elements.

Acknowledgments

This research was supported by Nanoscale Interdisciplinary Research Teams (NIRT) program, National Science Foundation (NSF).

References and Links

1.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of &epsiv; and &mu,” Soviet Physics - Uspekhi 10, 509–514 (1968). [CrossRef]

2.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef] [PubMed]

3.

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84, 2244–2246 (2004). [CrossRef]

4.

Y. Horii, C. Caloz, and T. Itoh, “Super-compact multilayered left-handed transmission line and diplexer application,” IEEE Trans. Microwave Theory Tech. 53, 1527–1534 (2005). [CrossRef]

5.

A. Alu and N. Engheta, “Guided modes in a waveguide filled with a pair of single-negative (SNG), double-negative (DNG), and/or double-positive (DPS) layers,” IEEE Trans. Microwave Theory Tech. 52, 199–210 (2004). [CrossRef]

6.

N. Engheta and R. W. Ziolkowski, “A positive future for double-negative metamaterials,” IEEE Trans. Microwave Theory Tech. 53, 1535–1556 (2005). [CrossRef]

7.

R. W. Ziolkowski and E. Heyman, “Wave propagation in media having negative permittivity and permeability,” Phys. Rev. E 64, 056625-056621 (2001). [CrossRef]

8.

Z. Jiangfeng, T. Koschny, Z. Lei, G. Tuttle, and C. M. Soukoulis, “Experimental demonstration of negative index of refraction,” Appl. Phys. Lett. 88, 221103-221101 (2006). [CrossRef]

9.

P. Kolinko and D. R. Smith, “Numerical study of electromagnetic waves interacting with negative index materials,” Opt. Express 11, (2003). [CrossRef] [PubMed]

10.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001). [CrossRef] [PubMed]

11.

G. Shvets and Y. Urzhumov, “Negative index meta-materials based on two-dimensional metallic structures,” J. Opt. A 8, S122 (2006). [CrossRef]

12.

Z. Shuang, F. Wenjun, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94, 037402-037401 (2005). [CrossRef]

13.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902-223901 (2005). [CrossRef] [PubMed]

14.

V. M. Shalaev, C. Wenshan, U. K. Chettiar, Y. Hsiao-Kuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358 (2005). [CrossRef]

15.

Z. Shuang, F. Wenjun, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404-137401 (2005). [CrossRef]

16.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006). [CrossRef] [PubMed]

17.

G. Shvets and Y. A. Urzhumov, “Engineering the electromagnetic properties of periodic nanostructures using electrostatic resonances,” Phys. Rev. Lett. 93, 243902-243901 (2004). [CrossRef]

18.

A. Alu, A. Salandrino, and N. Engheta, “Negative effective permeability and left-handed materials at optical frequencies,” Opt. Express 14, 1557 (2006). [CrossRef] [PubMed]

19.

J. R. James and P. S. Hall, Handbook of Microstrip Antennas (1988).

20.

C. A. Balanis, Antenna Theory: Analysis and Design, Third Edition ed. (John Wiley, 2005).

21.

A. K. Sarychev, G. Shvets, and V. M. Shalaev, “Magnetic Plasmon Resonance,” Phys. Rev. E 73, 036609 (2006). [CrossRef]

22.

W.J Padilla, D.R Smith, and D.N Basov, “Spectroscopy of metamaterials from infrared to optical frequencies,” J. Opt. Society America B 23, 404 (2006). [CrossRef]

23.

D. J. Bergman and D. Stroud, “Properties of Macroscopically Inhomogeneous Media,” Solid State Phys. 46, 147 (1992). [CrossRef]

24.

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002). [CrossRef]

25.

M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995). [CrossRef]

26.

P. Lalanne, “Improved formulation of the coupled-wave method for two-dimensional gratings,” J. Opt. Soc. Am. A 14, 1592–1598 (1997). [CrossRef]

27.

J. Jin, The Finite Elements Method in Electromagnetics, Second Edition (Wiley, New York, 2002).

28.

I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B 72, 155412 (2005). [CrossRef]

29.

N. M. Lawandy, “Localized surface plasmon singularities in amplifying media,” Appl. Phys. Lett. 85, 5040 (2004). [CrossRef]

30.

F. Hide, B. J. Schwartz, M. A. Diaz-Garcia, and A. J. Heeger, “Conjugated polymers as solid state laser materials,” Synth. Met. 91, 35 (1997). [CrossRef]

OCIS Codes
(160.4670) Materials : Optical materials
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Metamaterials

History
Original Manuscript: August 16, 2006
Revised Manuscript: October 20, 2006
Manuscript Accepted: October 26, 2006
Published: November 13, 2006

Citation
Vitaliy Lomakin, Yeshaiahu Fainman, Yaroslav Urzhumov, and Gennady Shvets, "Doubly negative metamaterials in the near infrared and visible regimes based on thin film nanocomposites," Opt. Express 14, 11164-11177 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-23-11164


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of &epsiv; and &mu," Soviet Physics - Uspekhi 10, 509-514 (1968). [CrossRef]
  2. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  3. D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, "Partial focusing of radiation by a slab of indefinite media," Appl. Phys. Lett. 84, 2244-2246 (2004). [CrossRef]
  4. Y. Horii, C. Caloz, and T. Itoh, "Super-compact multilayered left-handed transmission line and diplexer application," IEEE Trans. Microwave Theory Tech. 53, 1527-1534 (2005). [CrossRef]
  5. A. Alu and N. Engheta, "Guided modes in a waveguide filled with a pair of single-negative (SNG), double-negative (DNG), and/or double-positive (DPS) layers," IEEE Trans. Microwave Theory Tech. 52, 199-210 (2004). [CrossRef]
  6. N. Engheta and R. W. Ziolkowski, "A positive future for double-negative metamaterials," IEEE Trans. Microwave Theory Tech. 53, 1535-1556 (2005). [CrossRef]
  7. R. W. Ziolkowski and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Phys. Rev. E 64, 056625-056621 (2001). [CrossRef]
  8. Z. Jiangfeng, T. Koschny, Z. Lei, G. Tuttle, and C. M. Soukoulis, "Experimental demonstration of negative index of refraction," Appl. Phys. Lett. 88, 221103-221101 (2006). [CrossRef]
  9. P. Kolinko and D. R. Smith, "Numerical study of electromagnetic waves interacting with negative index materials," Opt. Express 11, (2003). [CrossRef] [PubMed]
  10. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001). [CrossRef] [PubMed]
  11. G. Shvets and Y. Urzhumov, "Negative index meta-materials based on two-dimensional metallic structures," J. Opt. A 8, S122 (2006). [CrossRef]
  12. Z. Shuang, F. Wenjun, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, "Midinfrared resonant magnetic nanostructures exhibiting a negative permeability," Phys. Rev. Lett. 94, 037402-037401 (2005). [CrossRef]
  13. J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, "Saturation of the magnetic response of split-ring resonators at optical frequencies," Phys. Rev. Lett. 95, 223902-223901 (2005). [CrossRef] [PubMed]
  14. V. M. Shalaev, C. Wenshan, U. K. Chettiar, Y. Hsiao-Kuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett. 30, 3356-3358 (2005). [CrossRef]
  15. Z. Shuang, F. Wenjun, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404-137401 (2005). [CrossRef]
  16. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous negative phase and group velocity of light in a metamaterial," Science 312, 892-894 (2006). [CrossRef] [PubMed]
  17. G. Shvets and Y. A. Urzhumov, "Engineering the electromagnetic properties of periodic nanostructures using electrostatic resonances," Phys. Rev. Lett. 93, 243902-243901 (2004). [CrossRef]
  18. A. Alu, A. Salandrino, and N. Engheta, "Negative effective permeability and left-handed materials at optical frequencies," Opt. Express 14, 1557 (2006). [CrossRef] [PubMed]
  19. J. R. James and P. S. Hall, Handbook of Microstrip Antennas (1988).
  20. C. A. Balanis, Antenna Theory: Analysis and Design, Third Edition ed. (John Wiley, 2005).
  21. A. K. Sarychev, G. Shvets, and V. M. Shalaev, "Magnetic Plasmon Resonance," Phys. Rev. E 73, 036609 (2006). [CrossRef]
  22. W.J. Padilla, D.R. Smith, and D.N. Basov, "Spectroscopy of metamaterials from infrared to optical frequencies," J. Opt. Society America B 23, 404 (2006). [CrossRef]
  23. D. J. Bergman and D. Stroud, ``Properties of Macroscopically Inhomogeneous Media,' Solid State Phys. 46, 147 (1992). [CrossRef]
  24. D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104 (2002). [CrossRef]
  25. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, "Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach," J. Opt. Soc. Am. A 12, 1077-1086 (1995). [CrossRef]
  26. P. Lalanne, "Improved formulation of the coupled-wave method for two-dimensional gratings," J. Opt. Soc. Am. A 14, 1592-1598 (1997). [CrossRef]
  27. J. Jin, The Finite Elements Method in Electromagnetics, Second Edition (Wiley, New York, 2002).
  28. I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, "Electrostatic (plasmon) resonances in nanoparticles," Phys. Rev. B 72, 155412 (2005). [CrossRef]
  29. N. M. Lawandy, "Localized surface plasmon singularities in amplifying media," Appl. Phys. Lett. 85, 5040 (2004). [CrossRef]
  30. F. Hide, B. J. Schwartz, M. A. Diaz-Garcia, and A. J. Heeger, "Conjugated polymers as solid state laser materials," Synth. Met. 91, 35 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited