OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 24 — Nov. 27, 2006
  • pp: 11668–11671
« Show journal navigation

Passively mode-locked Yb:LuVO4 oscillator

Simon Rivier, Xavier Mateos, Junhai Liu, Valentin Petrov, Uwe Griebner, Martin Zorn, Markus Weyers, Huaijin Zhang, Jiyang Wang, and Minhua Jiang  »View Author Affiliations


Optics Express, Vol. 14, Issue 24, pp. 11668-11671 (2006)
http://dx.doi.org/10.1364/OE.14.011668


View Full Text Article

Acrobat PDF (201 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Passive mode locking of the ytterbium doped orthovanadate crystal Yb:LuVO4 is reported for the first time. We demonstrate what we believe to be the shortest pulses directly generated with an Yb-doped crystalline laser using a semiconductor saturable absorber. The pulses at 1036 nm have a duration as short as 58 fs for an average power of 85 mW.

© 2006 Optical Society of America

1. Introduction

The broad and smooth emission spectrum and the somewhat higher emission cross sections of Yb:LuVO4 make it very interesting to evaluate its potential for passive modelocking in the sub-100 fs regime. This is due to the fact that the basic limitation of the present Yb-laser ultrafast technology which is based on diode pumping, in comparison to the widely spread Ti:sapphire laser technology which requires frequency doubled pump sources, is connected with the available bandwidths and the pulse durations that can be achieved. Here we report, for the first time to our knowledge, mode-locked operation of Yb:LuVO4 with Ti:sapphire laser pumping using a SESAM.

2. Gain profile of ytterbium doped lutetium vanadate

The Yb:LuVO4 crystal was grown along the a-axis by the conventional Czochralski method with a doping concentration of 1.56 at. % (measured in the crystal [4

4 . J. Liu, X. Mateos, H. Zhang, J. Wang, M. Jiang, U. Griebner, and V. Petrov, “Continuous —wave laser operation of Yb:LuVO4,” Opt. Lett. 30, 3162–3164 (2005). [CrossRef] [PubMed]

]). The fluorescence lifetime of Yb in LuVO4 amounts to 256 µs [4

4 . J. Liu, X. Mateos, H. Zhang, J. Wang, M. Jiang, U. Griebner, and V. Petrov, “Continuous —wave laser operation of Yb:LuVO4,” Opt. Lett. 30, 3162–3164 (2005). [CrossRef] [PubMed]

]. The absorption and emission cross-sections exhibit strong anisotropy and are higher for π-polarization (E//c) than for the σ-polarization. The main absorption band for π-polarization is centered at 985 nm with a peak cross section of 8.42×10-20 cm2 [4

4 . J. Liu, X. Mateos, H. Zhang, J. Wang, M. Jiang, U. Griebner, and V. Petrov, “Continuous —wave laser operation of Yb:LuVO4,” Opt. Lett. 30, 3162–3164 (2005). [CrossRef] [PubMed]

]. In the wavelength range of 1020–1055 nm, where laser oscillation occurs, the emission cross-section ranges from 2×10-21 to 10.3×10-21 cm2.

Fig. 1. Gain cross section σGAIN of Yb:LuVO4 for π-polarization (E//c) and different population inversion rates β.

In order to estimate the potential gain bandwidth for mode-locked operation, the gain cross section for π-polarization and several values of the population inversion parameter β is calculated and presented in Fig 1. β is the ratio of the number of excited ions to the total number of Yb-ions. It can be seen that the amplification bandwidth depends on the oscillation wavelengths and hence on the net gain or cavity losses. The gain profile is also quite smooth.

3. Experimental set-up

Fig. 2. Setup of the mode-locked Yb:LuVO4 laser: M1 - focusing mirror; M2, M3 - folding mirrors, P1, P2 - Brewster prisms; M4 - output couplers, FL - an f=6.28 cm focusing lens.

The SESAM used for mode-locking was grown by metalorganic vapor phase epitaxy (MOVPE). The distributed Bragg mirror on a GaAs substrate contained 25-AlAs/GaAs quarterwave layer pairs. Its high reflection band with R>99% extended from 1000 to 1080 nm. The absorbing part on top of the Bragg mirror was a 10 nm thick single InGaAs quantum well (QW) embedded in a GaAs layer. To accelerate the saturable absorber relaxation the QW was implanted with As-ions. Its relaxation time was measured by the pump-probe technique to be less than 5 ps. The saturable absorption amounted to ~0.5% and the saturation fluence was 20 µJ/cm2. The non-saturable losses were negligible.

Two SF10 prisms with a tip-to-tip separation of 37.5 cm, in the other cavity arm containing the output coupler, were used for dispersion compensation, Fig. 2. There was no tuning element in this cavity, so the wavelength changed slightly only when exchanging the output coupler, an effect well known for three-level laser systems like Yb. The incident power measured in front of the Yb:LuVO4 crystal was 1.14 W and roughly 80% of it was absorbed.

4. Experimental results and discussion

After optimization of the cavity alignment for mode-locked operation, the shortest pulses were obtained with an output coupler of transmission T=1%. The intensity autocorrelation trace with the corresponding fit and the spectrum of the shortest pulses are shown in Fig. 3. The pulse FWHM assuming sech2-pulse shape is 58 fs (Fig. 3a). This is what we believe to be the shortest pulse generated directly with a SESAM mode-locked crystalline Yb-laser. The corresponding output spectrum is centered at 1036 nm and has a bandwidth of 22 nm. This results in a time-bandwidth product of 0.357, which is only slightly above the Fourier limit for a sech2-pulse (0.315). This indicates that there is only limited potential for additional pulse shortening by extracavity compression. The average output power was 85 mW for a repetition rate of 94 MHz. The output power level increased to 200 mW at a longer pulse duration of 129 fs when an output coupler with T=3% was used. In this case the oscillation wavelength was 1024 nm and the time-bandwidth product was 0.332. The observed transversal mode of the Yb:LuVO4 laser remained in all cases essentially TEM00. No tendencies for Q-switching instabilities were observed [9

9 . C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16, 46–56, (1999). [CrossRef]

], and when decreasing the pump power the laser eventually switched to continuous-wave operation.

Fig. 3. Autocorrelation trace and the corresponding fit assuming sech2-pulse shape (a), and spectrum (b) in the femtosecond regime of the Yb:LuVO4 laser.

The achieved pulse duration of 58 fs is one of the shortest for ytterbium lasers. Similar pulse durations, 61 fs, were obtained only very recently with a Kerr-lens mode-locked Yb:YVO4 laser [7

7 . A. A. Lagatsky, A. R. Sarmani, C. T. A. Brown, W. Sibbett, V. E. Kisel, A. G. Selianov, I. A. Denisov, A. E. Troshin, K. V. Yumashev, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M.I. Kupcenko, “Yb3+-doped YVO4 crystal for efficient Kerr-lens mode locking in solid-state lasers,” Opt. Lett. 30, 3234–3336 (2005). [CrossRef] [PubMed]

]. Shorter pulses of 47 fs were reported only from a Yb:CaGdAlO4 laser but with external compression [10

10 . Y. Zaouter, J. Didierjean, F. Balembois, G. Lucas Leclin, F. Druon, P. Georges, J. Petit, P. Goldner, and B. Viana, “47-fs diode-pumped Yb3+-CaGdAlO4 laser,” Opt. Lett. 31, 119–121 (2006). [CrossRef] [PubMed]

]. In both cases the average output power was lower than in the present work. The same holds also for the mode-locked Yb:phosphate and Yb:silicate glass lasers which produced pulses as short as 58 and 61 fs, respectively [11

11 . C. Hönninger, F. Morier-Genoud, M. Moser, U. Keller, L. R. Brovelli, and C. Harder, “Efficient and tunable diode-pumped femtosecond Yb:glass lasers,” Opt. Lett. 23, 126–128 (1998). [CrossRef]

]. Thus our Yb:LuVO4 laser provided the shortest pulses directly from a SESAM mode-locked oscillator based on an Yb-doped crystalline material. It can be concluded that Yb-doped crystalline laser materials, and in particular the orthovanadates with their superior thermal properties, can provide the same bandwidths and smooth gain profiles as glasses.

5. Conclusion

Acknowledgements

This work has been supported by the EU project DT-CRYS, NMP3-CT-2003-505580 and the Grant for State Key Program of China (2004CB619002). X. Mateos acknowledges financial support from the Secretaria de Estado de Education y Universidades of Spain and from the Fondo Social Europeo.

References

1 .

J. Petit, B. Viana, P. Goldner, D. Vivien, P. Louiseau, and B. Ferrand, “Laser oscillation with low quantum defect in Yb:GdVO4, a crystal with high thermal conductivity,” Opt. Lett. 29, 833–835 (2004). [CrossRef] [PubMed]

2 .

C. Kränkel, D. Fagundes-Peters, S. T. Fredrich, J. Johannsen, M. Mond, G. Huber, M. Bernhagen, and R. Uecker, “Continuous wave laser operation of Yb3+:YVO4,” Appl. Phys. B 79, 543–546 (2004). [CrossRef]

3 .

V. E. Kisel, A. E. Troshin, N. A. Tolstik, V. G. Shcherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Spectroscopy and continuous-wave diode-pumped laser action of Yb3+:YVO4,” Opt. Lett. 29, 2491–2493 (2004). [CrossRef] [PubMed]

4 .

J. Liu, X. Mateos, H. Zhang, J. Wang, M. Jiang, U. Griebner, and V. Petrov, “Continuous —wave laser operation of Yb:LuVO4,” Opt. Lett. 30, 3162–3164 (2005). [CrossRef] [PubMed]

5 .

J. Liu, X. Mateos, U. Griebner, V. Petrov, C. Kränkel, R. Peters, K. Petermann, G. Huber, H. Zhang, J. Wang, and M. Jiang, “Diode-pumped Yb:TVO4 (T=Y, Gd, and Lu) lasers provide output powers exceeding 4 W in the continuous-wave regime,” Conference on Lasers and Electro-Optics CLEO 2006, Technical Digest CD-ROM, paper CThN6.

6 .

V. E. Kisel, A. E. Troshin, V. G. Shcherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Pashotta, F. Morier-Genoud, and U. Keller, “Femtosecond pulse generation with a diode-pumped Yb3+:YVO4 laser,” Opt. Lett. 30, 1150–1152 (2005). [CrossRef] [PubMed]

7 .

A. A. Lagatsky, A. R. Sarmani, C. T. A. Brown, W. Sibbett, V. E. Kisel, A. G. Selianov, I. A. Denisov, A. E. Troshin, K. V. Yumashev, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M.I. Kupcenko, “Yb3+-doped YVO4 crystal for efficient Kerr-lens mode locking in solid-state lasers,” Opt. Lett. 30, 3234–3336 (2005). [CrossRef] [PubMed]

8 .

U. Griebner, S. Rivier, V. Petrov, M. Zorn, G. Erbert, M. Weyers, X. Mateos, M. Aguiló, J. Massons, and F. Diaz, “Passively mode-locked Yb:KLu(WO4)2 oscillators,” Opt. Express 13, 3465–3470, 2005. [CrossRef] [PubMed]

9 .

C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16, 46–56, (1999). [CrossRef]

10 .

Y. Zaouter, J. Didierjean, F. Balembois, G. Lucas Leclin, F. Druon, P. Georges, J. Petit, P. Goldner, and B. Viana, “47-fs diode-pumped Yb3+-CaGdAlO4 laser,” Opt. Lett. 31, 119–121 (2006). [CrossRef] [PubMed]

11 .

C. Hönninger, F. Morier-Genoud, M. Moser, U. Keller, L. R. Brovelli, and C. Harder, “Efficient and tunable diode-pumped femtosecond Yb:glass lasers,” Opt. Lett. 23, 126–128 (1998). [CrossRef]

12 .

J. Liu, V. Petrov, H. Zhang, J. Wang, and M. Jiang, “High-power laser performance of a-cut and c-cut Yb:LuVO4 crystals,” Opt. Lett. 31, 3294–3296 (2006). [CrossRef] [PubMed]

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.5680) Lasers and laser optics : Rare earth and transition metal solid-state lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: September 5, 2006
Revised Manuscript: November 8, 2006
Manuscript Accepted: November 10, 2006
Published: November 27, 2006

Citation
Simon Rivier, Xavier Mateos, Junhai Liu, Valentin Petrov, Uwe Griebner, Martin Zorn, Markus Weyers, Huaijin Zhang, Jiyang Wang, and Minhua Jiang, "Passively mode-locked Yb:LuVO4 oscillator," Opt. Express 14, 11668-11671 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-24-11668


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Petit, B. Viana, P. Goldner, D. Vivien, P. Louiseau, and B. Ferrand, "Laser oscillation with low quantum defect in Yb:GdVO4, a crystal with high thermal conductivity," Opt. Lett. 29, 833-835 (2004). [CrossRef] [PubMed]
  2. C. Kränkel, D. Fagundes-Peters, S. T. Fredrich, J. Johannsen, M. Mond, G. Huber, M. Bernhagen, and R. Uecker, "Continuous wave laser operation of Yb3+:YVO4," Appl. Phys. B 79, 543-546 (2004). [CrossRef]
  3. V. E. Kisel, A. E. Troshin, N. A. Tolstik, V. G. Shcherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, "Spectroscopy and continuous-wave diode-pumped laser action of Yb3+:YVO4," Opt. Lett. 29, 2491-2493 (2004). [CrossRef] [PubMed]
  4. J. Liu, X. Mateos, H. Zhang, J. Wang, M. Jiang, U. Griebner, and V. Petrov, "Continuous -wave laser operation of Yb:LuVO4," Opt. Lett. 30, 3162-3164 (2005). [CrossRef] [PubMed]
  5. J. Liu, X. Mateos, U. Griebner, V. Petrov, C. Kränkel, R. Peters, K.  Petermann, G.  Huber, H. Zhang, J. Wang, and M. Jiang, „Diode-pumped Yb:TVO4 (T=Y, Gd, and Lu) lasers provide output powers exceeding 4 W in the continuous-wave regime," Conference on Lasers and Electro-Optics CLEO 2006, Technical Digest CD-ROM, paper CThN6.
  6. V. E. Kisel, A. E. Troshin, V. G. Shcherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Pashotta, F. Morier-Genoud, and U. Keller, "Femtosecond pulse generation with a diode-pumped Yb3+:YVO4 laser," Opt. Lett. 30, 1150-1152 (2005). [CrossRef] [PubMed]
  7. A. A. Lagatsky, A. R. Sarmani, C. T. A. Brown, W. Sibbett, V. E. Kisel, A. G. Selianov, I. A. Denisov, A. E. Troshin, K. V. Yumashev, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M.I. Kupcenko, "Yb3+-doped YVO4 crystal for efficient Kerr-lens mode locking in solid-state lasers," Opt. Lett. 30, 3234-3336 (2005). [CrossRef] [PubMed]
  8. U. Griebner, S. Rivier, V. Petrov, M. Zorn, G. Erbert, M. Weyers, X. Mateos, M. Aguiló, J. Massons, and F. Díaz, "Passively mode-locked Yb:KLu(WO4)2 oscillators," Opt. Express 13, 3465-3470, 2005. [CrossRef] [PubMed]
  9. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, "Q-switching stability limits of continuous-wave passive mode locking," J. Opt. Soc. Am. B 16,46-56, (1999). [CrossRef]
  10. Y. Zaouter, J. Didierjean, F. Balembois, G. Lucas Leclin, F. Druon, P. Georges, J. Petit, P. Goldner, and B. Viana, "47-fs diode-pumped Yb3+-CaGdAlO4 laser," Opt. Lett. 31, 119-121 (2006). [CrossRef] [PubMed]
  11. C. Hönninger, F. Morier-Genoud, M. Moser, U. Keller, L. R. Brovelli, and C. Harder, „Efficient and tunable diode-pumped femtosecond Yb:glass lasers," Opt. Lett. 23, 126-128 (1998). [CrossRef]
  12. J. Liu, V. Petrov, H. Zhang, J. Wang, and M. Jiang, "High-power laser performance of a-cut and c-cut Yb:LuVO4 crystals," Opt. Lett. 31, 3294-3296 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited