OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 25 — Dec. 11, 2006
  • pp: 12359–12364
« Show journal navigation

Supercontinuum generation in an imaging fiber taper

Kebin Shi, Fiorenzo G. Omenetto, and Zhiwen Liu  »View Author Affiliations


Optics Express, Vol. 14, Issue 25, pp. 12359-12364 (2006)
http://dx.doi.org/10.1364/OE.14.012359


View Full Text Article

Acrobat PDF (1850 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on supercontinuum generation in individual fibers of a commercial Schott imaging fiber taper. Supercontinuum spectrum covering a wavelength range from about 500 nm to 1 µm was obtained. Unlike conventional approaches which use either a single micro-structured photonic crystal fiber (PCF) or an individual fiber or PCF taper, the availability of many fibers in an imaging taper can open new possibilities to independently and controllably generate supercontinuum arrays.

© 2006 Optical Society of America

1. Introduction

2. Experiments and results

Imaging fiber tapers are typically used to transfer and magnify or de-magnify images [16]. An imaging taper itself consists of many individual fibers that are closely packed together. Figure 1 shows a portion of the microscope images of two representative Schott imaging tapers. Individual fibers can be easily observed (the brighter region corresponding to core). These fibers are made of Schott-24 glass. They have a typical size of 6-25 µm at the larger end [16] and the refractive index difference between the core (n~1.8) and the cladding (n~1.5) is quite large. As a result, these are multi-mode fibers. Another interesting feature to note is that the cross sections of the cores are not of circular shape. Instead, they have a rectangular corner.

Fig. 1. A portion of the microscope images showing the individual fibers in two representative Schott imaging fiber tapers (the brighter region corresponding to core). The cross sections of the cores have a rectangular corner.

We used a 60× objective lens (Newport, numerical aperture: 0.85) to couple femtosecond laser pulses (KM Labs, pulse energy ~4.5 nJ, pulse width ~60fs, center wavelength ~ 808nm) into a single fiber of an imaging taper (model 25970MU, 8 µm fiber pitch at the large end, magnification ratio: 3.125, length ~2.5 cm) from the larger end to generate supercontinuum. By adjusting the position of the taper, different far field supercontinuum patterns were observed as illustrated in Fig. 2. These pictures were captured at a few centimeters away from the taper output end. Similar supercontinuum pattern can sometimes exhibit dramatically different colors as can also be seen in Fig. 2. Patterns 1 and 2 (see Fig. 2) have an average power of 120 mW and 110 mW respectively (with an incoming laser average power of 370 mW) and are the two most intense patterns. We simulated the guided modes at different wavelengths by using a commercial software package (Photon Design, http://www.photond.com) which uses a fully vectorial mode finder to solve for 2D waveguide structures. In our simulation, the fiber cross section was approximated as a polygon and the guided mode solutions at different wavelengths were used to calculate the far field profiles. Many modes are supported and similarly shaped intensity distributions are found at different wavelengths. Some representative calculated far field profiles are shown in Fig. 3 where qualitative agreement with some of the observed patterns can be seen.

Fig. 2. Some observed far-field patterns of the supercontinuum generated in an imaging fiber taper (model 25970MU, Schott). These pictures were captured at a few centimeters away from the taper output end. Similar supercontinuum pattern can sometimes exhibit dramatically different colors.
Fig. 3. Representative calculated far field patterns. Qualitative agreement with some of the observed patterns in Fig. 2 can be seen.

Fig. 4. Typical supercontinuum spectra of three different patterns. The spectra of the three patterns are quite different in the short wavelength part (500nm–700nm). They are all peaked around the pump wavelength near 800nm and extend to the visible and near infrared regimes.
Fig. 5. Dependence of spectral broadening on pump power. The horizontal axis shows the average incoming laser power while the vertical axis represents the wavelength. The insets show the corresponding far field patterns.

A unique feature of the imaging taper is that it consists of many closely packed individual fibers. In the following, we demonstrate the generation of two supercontinua from two different fibers of the same taper. The schematic diagram of the experimental setup is shown in Fig. 6(a). A femtosecond laser beam (Spectra-Physics Tsunami, pulse width ~100 fs, average power ~1.8 W, center wavelength 810nm, repetition rate 80MHz) was first divided into two beams by a beamsplitter and then steered by mirrors into a 60× objective lens (focal length 2.8 mm) at a separation angle of about 2°. The separation of the two focused beams on the taper input facet (larger end) is therefore estimated to be ~100 µm which is much larger than the fiber pitch (~8 µm). This ensures that the supercontinua are generated from two different fibers. Both beams have about the same average power (~700 mW) right before the objective lens. The generated supercontinuum patterns were imaged by another objective lens onto an observation screen located a few meters away. Figures 6(b1) and 6(b2) show the observed supercontinuum patterns generated by the two incident beams respectively. The two beams were alternatively blocked during the experiment. When both beams were let through the two supercontinuum patterns can be observed simultaneously as illustrated in Fig. 6(b3). Since they are generated from different fibers of the taper, the two supercontinuum patterns are separated spatially. Next, we used a grating to disperse the generated supercontinuum. As expected, two rainbow-lines were produced which is shown in Fig. 6(c). To further illustrate our experimental results, here we also include two movies showing the two supercontinuum patterns and their rainbow spectra.

Fig. 6. Generation of double supercontinuum sources (a) schematic diagram of the experimental setup; (b1), (b2) and (b3) (Movie, 911K) show supercontinuum patterns generated in two different fibers; (c) rainbow (Movie, 849K) produced by passing the supercontinua through a grating; (d) a colored image produced by illuminating a diffractive optical element sample (Digital Optics Corporation) with the supercontinua. The two bright spots are the zero-order spots from the two supercontinua generated in the imaging taper which propagate at slightly different directions.

These experiments clearly demonstrate the generation of two supercontinuum sources which can be independently controlled. Finally, an aesthetically pleasing image can be obtained by propagating the supercontinua through a diffractive optical element sample (Digital Optics Corporation). In this case, a colored image of an eye was produced [Fig. 6(d)]. The two bright spots in the projected image are due to the undiffracted portions of the two supercontinuum beams propagating along slightly different directions.

3. Summary

Acknowledgments

We thank James Triba and Schott Fiber Optics for kindly providing the imaging tapers used in the experiments. We also thank Dr. Qing Wang for kindly allowing us to use the microscope in his lab and Peng Li for obtaining the microscope images. This work is supported by the National Science Foundation (ZL and FGO) and the Lehigh/Penn State center for optical technologies (ZL).

References and links

1.

R. R. Alfano, The Supercontinuum Laser Source, 2nd ed. (Springer, New York, 2006). [CrossRef]

2.

T. Udem, R. Holzwarth, and T.W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002). [CrossRef] [PubMed]

3.

Z. Yusoff, P. Petropoulos, K. Furusawa, T. M. Monro, and D. J. Richardson, “A 36-channel×10-GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber,” IEEE Photon. Technol. Lett. 15, 1689–1691 (2003). [CrossRef]

4.

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett 26, 608–610 (2001). [CrossRef]

5.

K. Shi, P. Li, S. Yin, and Z. Liu, “Chromatic confocal microscopy using supercontinuum light,” Opt. Express 12, 2096–2101 (2004). [CrossRef] [PubMed]

6.

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and Spectroscopy of Gold Nanoparticles using Supercontinuum White Light Confocal Microscopy,” Phys. Rev. Lett. 93, 037401 (2004). [CrossRef] [PubMed]

7.

P. Li., K. Shi, and Z. Liu, “Manipulation and spectroscopy of a single particle by use of white-light optical tweezers,” Opt. Lett. 30, 156–158 (2005). [CrossRef] [PubMed]

8.

T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000). [CrossRef]

9.

A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibers, (Kluwer Academic Publishers, Boston, 2003). [CrossRef]

10.

J. C. Knight, T. A. Birks, P. S. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996). [CrossRef] [PubMed]

11.

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000). [CrossRef]

12.

F. G. Omenetto, N. A. Wolchover, M. R. Wehner, M. Ross, A. Efimov, A. J. Taylor, V. V. R. K. Kumar, A. K. George, J. C. Knight, N. Y. Joly, and P. St. J. Russell, “Spectrally smooth supercontinuum from 350 nm to 3µm in sub-centimeter lengths of soft-glass photonic crystal fibers,” Opt. Express 14, 4928–4934 (2006). [CrossRef] [PubMed]

13.

K. P. Hansen, “Introduction to nonlinear photonic crystal fibers,” J. Opt. Fiber. Commun. Rep. 2, 226–254 (2005). [CrossRef]

14.

M. H. Frosz, T. Sørensen, and O. Bang, “Nanoengineering of photonic crystal fibers for supercontinuum spectral shaping,” J. Opt. Soc. Am. B 23, 1692–1699 (2006). [CrossRef]

15.

D. A. Akimov, M. Schmitt, R. Maksimenka, K. V. Dukel’kii, Y. N. Kondrat’v, A. V. Khokhlov, V. S. Shevandin, W. Kiefer, and A. M. Zheltikov, “Supercontinuum generation in a multiple-submicron-core microstructure fiber: toward limiting waveguide enhancement of nonlinear-optical processes,” Appl. Phys. B: Lasers and Optics 77, 299–305 (2003). [CrossRef]

16.

http://www.us.schott.com/fiberoptics/english/products/healthcare/imagingfiberoptics/fusedcomponents/tapers.html

17.

G. P. Agrawal, Nonlinear Fiber Optics, 2nd Ed, (Academic Press, San Diego, 1995).

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(320.7140) Ultrafast optics : Ultrafast processes in fibers

ToC Category:
Nonlinear Optics

History
Original Manuscript: October 16, 2006
Revised Manuscript: November 27, 2006
Manuscript Accepted: November 28, 2006
Published: December 11, 2006

Citation
Kebin Shi, Fiorenzo G. Omenetto, and Zhiwen Liu, "Supercontinuum generation in an imaging fiber taper," Opt. Express 14, 12359-12364 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-25-12359


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. R. Alfano, The Supercontinuum Laser Source, 2nd ed. (Springer, New York, 2006). [CrossRef]
  2. T. Udem, R. Holzwarth and T.W. Hänsch, "Optical frequency metrology," Nature 416, 233-237 (2002). [CrossRef] [PubMed]
  3. Z. Yusoff, P. Petropoulos, K. Furusawa, T. M. Monro and D. J. Richardson, "A 36-channel x 10-GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber," IEEE Photon. Technol. Lett. 15, 1689-1691 (2003). [CrossRef]
  4. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber," Opt. Lett 26, 608-610 (2001). [CrossRef]
  5. K. Shi, P. Li, S. Yin and Z. Liu, "Chromatic confocal microscopy using supercontinuum light," Opt. Express 12, 2096-2101 (2004). [CrossRef] [PubMed]
  6. K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, "Detection and Spectroscopy of Gold Nanoparticles using Supercontinuum White Light Confocal Microscopy," Phys. Rev. Lett. 93, 037401 (2004). [CrossRef] [PubMed]
  7. P. Li., K. Shi, and Z. Liu, "Manipulation and spectroscopy of a single particle by use of white-light optical tweezers," Opt. Lett. 30, 156-158 (2005). [CrossRef] [PubMed]
  8. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, "Supercontinuum generation in tapered fibers," Opt. Lett. 25, 1415-1417 (2000). [CrossRef]
  9. A. Bjarklev, J. Broeng and A. S. Bjarklev, Photonic Crystal Fibers, (Kluwer Academic Publishers, Boston, 2003). [CrossRef]
  10. J. C. Knight, T. A. Birks, P. S. Russell and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996). [CrossRef] [PubMed]
  11. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000). [CrossRef]
  12. F. G. Omenetto, N. A. Wolchover, M. R. Wehner, M. Ross, A. Efimov, A. J. Taylor, V. V. R. K. Kumar, A. K. George, J. C. Knight, N. Y. Joly, and P. St. J. Russell, "Spectrally smooth supercontinuum from 350 nm to 3μm in sub-centimeter lengths of soft-glass photonic crystal fibers," Opt. Express 14, 4928-4934 (2006). [CrossRef] [PubMed]
  13. K. P. Hansen, "Introduction to nonlinear photonic crystal fibers," J. Opt. Fiber. Commun. Rep. 2, 226-254 (2005). [CrossRef]
  14. M. H. Frosz, T. Sørensen, and O. Bang, "Nanoengineering of photonic crystal fibers for supercontinuum spectral shaping," J. Opt. Soc. Am. B 23, 1692-1699 (2006). [CrossRef]
  15. D. A. Akimov, M. Schmitt, R. Maksimenka, K. V. Dukel’kii, Y. N. Kondrat’v, A. V. Khokhlov, V. S. Shevandin, W. Kiefer, and A. M. Zheltikov, "Supercontinuum generation in a multiple-submicron-core microstructure fiber: toward limiting waveguide enhancement of nonlinear-optical processes," Appl. Phys. B: Lasers and Optics 77, 299-305 (2003). [CrossRef]
  16. http://www.us.schott.com/fiberoptics/english/products/healthcare/imagingfiberoptics/fusedcomponents/tapers.html
  17. G. P. Agrawal, Nonlinear Fiber Optics, 2nd Ed, (Academic Press, San Diego, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (2464 KB)     
» Media 2: AVI (1688 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited