OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 26 — Dec. 25, 2006
  • pp: 12880–12886
« Show journal navigation

Tunable slow light device using quantum dot semiconductor laser

P. C. Peng, C. T. Lin, H. C. Kuo, W. K. Tsai, J. N. Liu, S. Chi, S. C. Wang, G. Lin, H. P. Yang, K. F. Lin, and J. Y. Chi  »View Author Affiliations


Optics Express, Vol. 14, Issue 26, pp. 12880-12886 (2006)
http://dx.doi.org/10.1364/OE.14.012880


View Full Text Article

Acrobat PDF (453 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This investigation experimentally demonstrates a tunable slow light device using a quantum dot (QD) semiconductor laser. The QD semiconductor laser at 1.3 µm fabricated on a GaAs substrate is grown by molecular beam epitaxy. Tunable slow light can be achieved by adjusting the bias current and wavelength detuning. The slow light device operated under probe signal from 5 to 10 GHz is presented. Moreover, we also demonstrate that the tunable slow light device can be used in a subcarrier multiplexed system.

© 2006 Optical Society of America

1. Introduction

Slow and fast light has attracted a lot of attention because it has significant applications in optical communication, optical memories, signal processing, and phase-array antenna systems [1–7

1. R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Optics & Photonics News 19, 18–23 (2006). [CrossRef]

]. Recently, slow light has been demonstrated in electromagnetically induced transparency, coherent population oscillations, and stimulated Brillouin and Raman scattering. The slow light based on semiconductor optoelectronic devices is also promising due to its inherent compactness, direct electrical controllability, and low power consumption [8–12

8. P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29, 2291–2293 (2004). [CrossRef] [PubMed]

]. Moreover, room temperature slow light in a quantum dot (QD) semiconductor optical amplifier has been recently demonstrated because quantum dots can provide better carrier confinement and offer reduced thermal ionization or carrier escape at room temperature [11–12

11. H. Su and S. L. Chuang, “Room-temperature slow light with semiconductor quantum-dot devices,” Opt. Lett. 31, 271–273 (2006). [CrossRef] [PubMed]

]. Therefore, the quantum dot gain medium is attractive compared with bulk and quantum wells. Semiconductor lasers with the quantum dot gain medium also have been studied to improve the laser characteristics, including low threshold currents, temperature insensitive, low chirp, and high differential gain [13–17

13. D. Bimberg, “Quantum dots for lasers, amplifiers and computing,” Journal of Physics D: Applied Physics 38, 2055–2058 (2005). [CrossRef]

]. Long-wavelength QD vertical-cavity surface-emitting laser (VCSELs) using intracavity structures have been proposed [14–15

14. N. N. Ledentsov, “Long-wavelength quantum-dot lasers on GaAs substrates: from media to device concepts,” IEEE Journal of Selected Topics in Quantum Electronics 8, 1015–1024 (2002). [CrossRef]

]. However, the fabrication method of intracavity structures is critical and the device yields are low. Recently, there has been significant progress in the development of monolithically single-mode QD VCSELs [16–17

16. H. P. Yang, Y. H. Chang, F. I. Lai, H. C. Yu, Y. J. Hsu, G. Lin, R. S. Hsiao, H. C. Kuo, S. C. Wang, and J. Y. Chi, “Singlemode InAs quantum dot photonic crystal VCSELs,” Electronics Letters 41, 1130–1132 (2005). [CrossRef]

].

In this paper, we report the slow light device using the monolithically single-mode QD VCSEL in an external injection scheme. Tunable slow light can be achieved by adjusting the bias current and wavelength detuning. A 10 GHz modulation signal with optical group delay 95 ps is presented. We also study the relationship between the modulation frequencies of probe signal and the time delay. The slow light device can be used in a subcarrier multiplexed (SCM) system.

2. Experiment and Results

Fig. 1. Schematic diagram of monolithically single-mode QD VCSEL.
Fig. 2 Schematic diagram of TO-Can packaged QD VCSEL.
Fig. 3. Output spectrum and light-current characteristics of quantum dot VCSEL.
Fig. 4. Experimental setup for measuring the slow light in QD VCSEL. (EOM: electro-optic modulator, VA: variable optical attenuator, C: optical circulator, OC: optical coupler, PC: polarization controller, RFA: RF amplifier, PD: photodetector, OSA: optical spectrum analyzer)
Fig. 5. The measurements of time delay of QD VCSEL at the various bias currents.
Fig. 6. The measurements of time delay at different wavelength detuning.
Fig. 7. The waveform of probe signals at different modulation frequencies.

Figure 7 shows the waveform at different modulation frequencies of probe signals when the bias current of QD VCSEL is at 1 mA and the wavelength detuning is 0 nm. For 8 GHz and 6 GHz, the time delays are 44 ps and 60 ps, respectively. Moreover, the relationship between the time delays and modulation frequencies of probe signal are shown in the inset of Fig. 7. The time delay in the QD VCSEL increases as the modulation frequency decreases. We also demonstrate that this slow light device can be used for SCM systems. Figure 8 shows the experimental setup for the slow light device in a SCM system. A 100 Mb/s non-return-to-zero (NRZ) pseudo-random binary sequence (PRBS) data with 231-1 pattern length from a pattern generator (PG) is mixed with a 9 GHz RF carrier. The electrical microwave signal is then used to modulate the electro-optic modulator. Fig. 9 shows the time domain measurements of the 9 GHz 100 Mb/s signal. The time delays are around 42.5 ps. Then, the 9 GHz 100 Mb/s is down converted using a mixer, where it is mixed with the same RF carrier generated by the signal generator. The corresponding eye diagrams are shown in the inset of Fig. 9. Measurements of eye diagrams indicate that the developed slow light device is appropriate for use in a 9 GHz 100 Mb/s SCM system.

Fig. 8. Experimental setup for the QD VCSEL in a subcarrier multiplexed system. (PG: pattern generator, LPF: low pass filter, OA: optical amplifier).
Fig. 9. 9 GHz 100 Mb/s data signal and eye diagram of 100 Mb/s signal from the oscilloscope.

SCM has many important applications in optical systems including: cable television systems, fiber-wireless systems, microwave photonics systems, and controlling information in optical networks. However, polarization-mode dispersion (PMD) is one of the critical challenges in long-distance optical transmission systems using SCM after the successful mitigation of chromatic dispersion. Although present-day fibers have PMD values ~0.1 ps/km1/2, much of the previously embedded fiber has PMD values ranging from 1 to as high as 10 ps/km1/2 [18

18. I. Kaminow and T. Li, Optical Fiber Telecommunications IVB (Academic Press, San Diego, 2002), Chap. 15.

, 19

19. O. H. Adamczyk, A. B. Sahin, Y. Qian, S. Lee, and A. E. Willner, “Statistics of PMD-induced power fading for intensity-modulated double-sideband and single-sideband microwave and millimeter-wave signals,” IEEE Transactions on Microwave Theory and Techniques 49, 1962–1967 (2001). [CrossRef]

]. For SCM systems, when the relative propagation delay between the two orthogonal principal states of polarization of the fiber (i.e., first-order PMD) is the half of period of the subcarrier, a serious SCM signal fading occurs. Due to PMD varying with temperature and other environmental changes, a tunable optical delay is required to compensate the PMD [18

18. I. Kaminow and T. Li, Optical Fiber Telecommunications IVB (Academic Press, San Diego, 2002), Chap. 15.

, 20

20. H. Y. Pua, K. Peddanarappagari, B. Zhu, C. Allen, K. Demarest, and R. Hui, “An adaptive first-order polarization-mode dispersion compensation system aided by polarization scrambling: Theory and demonstration,” Journal of Lightwave Technology 18, 832–841 (2000). [CrossRef]

]. However, the tunable optical delay is often implemented by using a mechanical system. The speed and size of the mechanical system raise concerns. Therefore, the tunable slow light device based on semiconductor optoelectronic devices is promising due to inherent compactness and electrical controllability.

Fig. 10. Proposed architecture for the PMD compensation using a QD VCSEL. (SCM signal: subcarrier multiplexed signal, PBS: polarization beam splitter)

3. Conclusion

We experimentally demonstrate a tunable slow light device using a 1.3 µm QD VCSEL at room temperature for the first time. The monolithically single-mode QD VCSEL based on GaAs substrate is the fully doped structure. Optical delays 95 ps for 10 GHz are achieved by varying the bias current and wavelength detuning. Moreover, we also study that the relationship between the modulation frequency of probe signal and the time delay. The slow light device for a 9 GHz 100 Mb/s SCM system has been demonstrated. Additionally, a novel PMD compensating system using the tunable slow light device is also proposed. The idea has the potential to reduce the size and cost of the PMD compensator.

Acknowledgments

The authors would like to thank Dr. A. R. Kovsh (NL Nanosemiconductor GmbH) for his assistance and cooperation in epitaxial growth. This work is supported by the National Science Council, Republic of China, under contract NSC 94-2752-E-009-007-PAE and NSC 95-2112-M-260-001-MY2.

References and links

1.

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Optics & Photonics News 19, 18–23 (2006). [CrossRef]

2.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 m/s in an ultracold atomic gas,” Nature 397, 594–598 (1999). [CrossRef]

3.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and Slow-light propagation in a room-temperature solid,” Science 301, 200–202 (2003). [CrossRef] [PubMed]

4.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005). [CrossRef] [PubMed]

5.

K. Y. Song, K. S. Abedin, K. Hotate, M. González Herráez, and L. Thévenaz, “Highly efficient Brillouin slow and fast light using As2Se3 chalcogenide fiber,” Opt. Express 14, 5860–5865 (2006). [CrossRef] [PubMed]

6.

J. E. Sharping, Y. Okawachi, and A. L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13, 6092–6098 (2005). [CrossRef] [PubMed]

7.

D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express 13, 6234–6249 (2005). [CrossRef] [PubMed]

8.

P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29, 2291–2293 (2004). [CrossRef] [PubMed]

9.

X. Zhao, P. Palinginis, B. Pesala, C. J. Chang-Hasnain, and P. Hemmer, “Tunable ultraslow light in vertical-cavity surface-emitting laser amplifier,” Opt. Express 13, 7899–7904 (2005). [CrossRef] [PubMed]

10.

H. Su, P. Kondratko, and S. L. Chuang, “Variable optical delay using population oscillation and four-wave-mixing in semiconductor optical amplifiers,” Opt. Express 14, 4800–4807 (2006). [CrossRef] [PubMed]

11.

H. Su and S. L. Chuang, “Room-temperature slow light with semiconductor quantum-dot devices,” Opt. Lett. 31, 271–273 (2006). [CrossRef] [PubMed]

12.

H. Su and S. L. Chuang, “Room temperature slow and fast light in quantum-dot semiconductor optical amplifiers,” Applied Physics Letters 88, Art. No. 061102 (2006). [CrossRef]

13.

D. Bimberg, “Quantum dots for lasers, amplifiers and computing,” Journal of Physics D: Applied Physics 38, 2055–2058 (2005). [CrossRef]

14.

N. N. Ledentsov, “Long-wavelength quantum-dot lasers on GaAs substrates: from media to device concepts,” IEEE Journal of Selected Topics in Quantum Electronics 8, 1015–1024 (2002). [CrossRef]

15.

V. M. Ustinov, N. A. Maleev, A. R. Kovsh, and A. E. Zhukov, “Quantum dot VCSELs,” Physica Status Solidi A 202, 396–402 (2005). [CrossRef]

16.

H. P. Yang, Y. H. Chang, F. I. Lai, H. C. Yu, Y. J. Hsu, G. Lin, R. S. Hsiao, H. C. Kuo, S. C. Wang, and J. Y. Chi, “Singlemode InAs quantum dot photonic crystal VCSELs,” Electronics Letters 41, 1130–1132 (2005). [CrossRef]

17.

Y. H. Chang, P. C. Peng, W. K. Tsai, G. Lin, F. I. Lai, R. S. Hsiao, H. P. Yang, H. C. Yu, K. F. Lin, J. Y. Chi, S. C. Wang, and H. C. Kuo, “Singlemode monolithic quantum-dot VCSEL in 1.3 µm with side-mode suppression ratio over 30dB,” IEEE Photonics Technology Letters 18, 847–849 (2006). [CrossRef]

18.

I. Kaminow and T. Li, Optical Fiber Telecommunications IVB (Academic Press, San Diego, 2002), Chap. 15.

19.

O. H. Adamczyk, A. B. Sahin, Y. Qian, S. Lee, and A. E. Willner, “Statistics of PMD-induced power fading for intensity-modulated double-sideband and single-sideband microwave and millimeter-wave signals,” IEEE Transactions on Microwave Theory and Techniques 49, 1962–1967 (2001). [CrossRef]

20.

H. Y. Pua, K. Peddanarappagari, B. Zhu, C. Allen, K. Demarest, and R. Hui, “An adaptive first-order polarization-mode dispersion compensation system aided by polarization scrambling: Theory and demonstration,” Journal of Lightwave Technology 18, 832–841 (2000). [CrossRef]

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(230.1150) Optical devices : All-optical devices

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: July 17, 2006
Revised Manuscript: December 5, 2006
Manuscript Accepted: December 6, 2006
Published: December 22, 2006

Citation
P. C. Peng, C. T. Lin, H. C. Kuo, W. K. Tsai, J. N. Liu, S. Chi, S. C. Wang, G. Lin, H. P. Yang, K. F. Lin, and J. Y. Chi, "Tunable slow light device using quantum dot semiconductor laser," Opt. Express 14, 12880-12886 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-26-12880


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, "Applications of slow light in telecommunications," Optics & Photonics News 19, 18-23 (2006). [CrossRef]
  2. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 m/s in an ultracold atomic gas," Nature 397, 594-598 (1999). [CrossRef]
  3. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Superluminal and Slow-light propagation in a room-temperature solid," Science 301, 200-202 (2003). [CrossRef] [PubMed]
  4. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005). [CrossRef] [PubMed]
  5. K. Y. Song, K. S. Abedin, K. Hotate, M. González Herráez, and L. Thévenaz, "Highly efficient Brillouin slow and fast light using As2Se3 chalcogenide fiber," Opt. Express 14, 5860-5865 (2006). [CrossRef] [PubMed]
  6. J. E. Sharping, Y. Okawachi, and A. L. Gaeta, "Wide bandwidth slow light using a Raman fiber amplifier," Opt. Express 13, 6092-6098 (2005). [CrossRef] [PubMed]
  7. D. Dahan and G. Eisenstein, "Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering," Opt. Express 13, 6234-6249 (2005). [CrossRef] [PubMed]
  8. P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, "Slow light in semiconductor quantum wells," Opt. Lett. 29, 2291-2293 (2004). [CrossRef] [PubMed]
  9. X. Zhao, P. Palinginis, B. Pesala, C. J. Chang-Hasnain, and P. Hemmer, "Tunable ultraslow light in vertical-cavity surface-emitting laser amplifier," Opt. Express 13, 7899-7904 (2005). [CrossRef] [PubMed]
  10. H. Su, P. Kondratko, and S. L. Chuang, "Variable optical delay using population oscillation and four-wave-mixing in semiconductor optical amplifiers," Opt. Express 14, 4800-4807 (2006). [CrossRef] [PubMed]
  11. H. Su and S. L. Chuang, "Room-temperature slow light with semiconductor quantum-dot devices," Opt. Lett. 31, 271-273 (2006). [CrossRef] [PubMed]
  12. H. Su, and S. L. Chuang, "Room temperature slow and fast light in quantum-dot semiconductor optical amplifiers," Applied Physics Letters 88,. 061102 (2006). [CrossRef]
  13. D. Bimberg, "Quantum dots for lasers, amplifiers and computing," Journal of Physics D: Applied Physics 38, 2055-2058 (2005). [CrossRef]
  14. N. N. Ledentsov, "Long-wavelength quantum-dot lasers on GaAs substrates: from media to device concepts," IEEE Journal of Selected Topics in Quantum Electronics 8, 1015 - 1024 (2002). [CrossRef]
  15. V. M. Ustinov, N. A. Maleev, A. R. Kovsh, and A. E. Zhukov, "Quantum dot VCSELs," Physica Status Solidi A 202, 396-402 (2005). [CrossRef]
  16. H. P. Yang, Y. H. Chang, F. I. Lai, H. C. Yu, Y. J. Hsu, G. Lin, R. S. Hsiao, H. C. Kuo, S. C. Wang, and J. Y. Chi, "Singlemode InAs quantum dot photonic crystal VCSELs," Electronics Letters 41, 1130-1132 (2005). [CrossRef]
  17. Y. H. Chang, P. C. Peng, W. K. Tsai, G. Lin, F. I. Lai, R. S. Hsiao, H. P. Yang, H. C. Yu, K. F. Lin, J. Y. Chi, S. C. Wang, and H. C. Kuo, "Singlemode monolithic quantum-dot VCSEL in 1.3 μm with side-mode suppression ratio over 30dB," IEEE Photonics Technology Letters 18, 847-849 (2006). [CrossRef]
  18. I. Kaminow and T. Li, Optical Fiber Telecommunications IVB (Academic Press, San Diego, 2002), Chap. 15.
  19. O. H. Adamczyk, A. B. Sahin, Y. Qian, S. Lee, and A. E. Willner, "Statistics of PMD-induced power fading for intensity-modulated double-sideband and single-sideband microwave and millimeter-wave signals," IEEE Transactions on Microwave Theory and Techniques 49, 1962-1967 (2001). [CrossRef]
  20. H. Y. Pua, K. Peddanarappagari, B. Zhu, C. Allen, K. Demarest, and R. Hui, "An adaptive first-order polarization-mode dispersion compensation system aided by polarization scrambling: Theory and demonstration," Journal of Lightwave Technology 18, 832-841 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited