OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 5 — Mar. 6, 2006
  • pp: 1942–1950
« Show journal navigation

Tunable supercontinuum generation in a high-index-step photonic-crystal fiber with a comma-shaped core

Ming-Lie Hu, Ching-Yue Wang, Yan-Feng Li, Lu Chai, and Aleksei M. Zheltikov  »View Author Affiliations


Optics Express, Vol. 14, Issue 5, pp. 1942-1950 (2006)
http://dx.doi.org/10.1364/OE.14.001942


View Full Text Article

Acrobat PDF (506 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A fused silica high-index-step photonic-crystal fiber with a comma-shaped core is shown to support two different types of guided modes with bell-shaped intensity profiles, efficiently transforming unamplified 30-fs Ti: sapphire laser pulses into supercontinuum emission through two different physical mechanisms. The modes of the first type provide broadly spanning supercontinuum emission with a smooth spectrum stretching from 450 to 1400 nm. The initial stage of supercontinuum generation in these modes involves four-wave mixing around the wavelength of zero group-velocity dispersion, leading to the depletion of the pump field. The modes of the second type generate supercontinuum with an enhanced short-wavelength wing, dominated by intense spectral lines centered at 400–450 nm. The two regimes of supercontinuum generation and the two types of output spectra are switched by displacing the input end of the fiber with respect to the laser beam in the transverse direction.

© 2006 Optical Society of America

1. Introduction

Photonic-crystal fibers (PCFs) [1–3

1. P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003). [CrossRef] [PubMed]

] open new horizons in ultrafast laser technologies, providing unprecedented efficiencies of spectral transformation of unamplified femtosecond laser pulses [4

4. A. M. Zheltikov, ed. Photonic Crystals, Appl. Phys. B81, nos. 2/3 (2005). [CrossRef]

]. Fibers of this type can serve as efficient sources of broadband radiation [5

5. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000). [CrossRef]

, 6

6. W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Mann, and P. St. J. Russell, “Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,” J. Opt. Soc. Am. B 19, 2148–2155 (2002). [CrossRef]

], frequency-comb expanders [7

7. R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000). [CrossRef] [PubMed]

, 8

8. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000). [CrossRef] [PubMed]

], and frequency shifters [9

9. S. O. Konorov and A. M. Zheltikov, “Frequency conversion of subnanojoule femtosecond laser pulses in a microstructure fiber for photochromism initiation,” Opt. Express 11, 2440–2445 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-19-2440 [CrossRef] [PubMed]

], finding numerous applications in optical frequency metrology [10

10. Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002). [CrossRef] [PubMed]

], coherent spectroscopy [11

11. S. O. Konorov, D. A. Akimov, E. E. Serebryannikov, A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, “Cross-correlation FROG CARS with frequency-converting photonic-crystal fibers,” Phys. Rev. E 70, 057601 (2004). [CrossRef]

], nonlinear microscopy [12

12. H. N. Paulsen, K. M. HilligsØe, J. ThØgersen, S. R. Keiding, and J. J. Larsen, “Coherent anti-stokes Raman scattering microscopy with a photonic crystal fiber based light source,” Opt. Lett. 28, 1123–1125 (2003). [CrossRef] [PubMed]

], carrier--envelope phase stabilization [13

13. A. Baltuska, T. Fuji, and T. Kobayashi, “Self-referencing of the carrier-envelope slip in a 6-fs visible parametric amplifier,” Opt. Lett. 27, 1241–1243 (2002). [CrossRef]

, 14

14. A. Baltuska, T. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, C. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421, 611–615 (2003). [CrossRef] [PubMed]

], optical parametric amplification of few-cycle laser pulses [15

15. C. Y. Teisset, N. Ishii, T. Fuji, T. Metzger, S. KÖhler, R. Holzwarth, A. Baltuska, A. M. Zheltikov, and F. Krausz, “Soliton-based pump.seed synchronization for few-cycle OPCPA,” Opt. Express 13, 6550–6557 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-17-6550 [CrossRef] [PubMed]

], and biomedical optics [16

16. Hartl, X. D. Li, C. Chudoba, R. K. Rhanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26, 608–610 (2001). [CrossRef]

].

PCFs with a high air-filling fraction of the cladding provide a large difference in refractive indices of the core and the cladding (high delta), leading to a strong confinement of the laser field in a micron-diameter fiber core [17

17. A. B. Fedotov, A. M. Zheltikov, A. P. Tarasevitch, and D. von der Linde, “Enhanced spectral broadening of short laser pulses in high-numerical-aperture holey fibers,” Appl. Phys. B 73, 181–184 (2001). [CrossRef]

]. Such high-delta PCFs dramatically enhance optical nonlinearities [18

18. D. A. Akimov, E. E. Serebryannikov, A. M. Zheltikov, M. Schmitt, R. Maksimenka, W. Kiefer, K. V. Dukel’skii, V. S. Shevandin, and Yu. N. Kondrat’ev, “Efficient anti-Stokes generation through phase-matched four wave mixing in higher-order modes of a microstructure fiber,” Opt. Lett. 28, 1948–1950 (2003). [CrossRef] [PubMed]

], serving as efficient supercontinuum generators and frequency up- and down-converters for short-pulse laser sources. Birefringence, induced in such PCFs by the form anisotropy of the core [19

19. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325–1327 (2000). [CrossRef]

, 20

20. T. P. Hansen, J. Broeng, S. E.B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588–590 (2001). [CrossRef]

] or the cladding [21

21. M. J. Steel and J. R. M. Osgood, “Elliptical-hole photonic crystal fibers,” Opt. Lett. 26, 229–231 (2001). [CrossRef]

], allows polarization control of supercontinuum generation [22

22. A. Apolonski, B. Povazay, A. Unterhuber, W. Drexler, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, “Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses,” J. Opt. Soc. Am. B 19, 2165–2170 (2002). [CrossRef]

, 23

23. M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82, 2197–2199 (2003). [CrossRef]

] and frequency shifting [24

24. M. Hu, C.-Y. Wang, Y. Li, Z. Wang, L. Chai, and A. M. Zheltikov, “Polarization- and mode-dependent anti-Stokes emission in a birefringent microstructure fiber,” IEEE Photonics Technol. Lett. 17, 630–632 (2005). [CrossRef]

, 25

25. M. L. Hu, C. Y. Wang, L. Chai, and A. M. Zheltikov, “Frequency-tunable anti-Stokes line emission by eigenmodes of a birefringent microstructure fiber,” Opt. Express 12, 1932–1937 (2004),http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1932 [CrossRef] [PubMed]

], as well as polarization demultiplexing of the multicolor frequency-shifted output of the PCF [26

26. M. Hu, C.-Y. Wang, Y. Li, L. Chai, and A. M. Zheltikov, “Polarization-demultiplexed two-color frequency conversion of femtosecond pulses in birefringent photonic-crystal fibers,” Opt. Express 13, 5947–5952 (2005),http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-16-5947. [CrossRef] [PubMed]

].

In this work, we show that a high-delta PCF with a more complex, comma-shaped core offers interesting new options for tunable supercontinuum generation. We demonstrate that such PCFs can support two different types of guided modes, efficiently transforming unamplified 30-fs Ti: sapphire laser pulses into supercontinuum emission through two different physical mechanisms. The two regimes of supercontinuum generation, leading to two different types of output spectra, are switched by displacing the input end of the fiber with respect to the laser beam in the transverse direction.

2. Experimental technique and photonic-crystal fibers

Experiments were performed with the use of a Ti: sapphire oscillator with an X-folded cavity, pumped with a 4-W second-harmonic output of a diode-pumped Nd: YVO4 laser (Millennia VS, Spectra-Physics). A Brewster-cut Ti: sapphire crystal with a length of 2.3 mm was placed at the center of the laser cavity between two focusing mirrors (Newport) with a focal length of 50 mm. Chirped mirrors and a prism pair were used for dispersion compensation. The separation of the prisms in the pair is 240 mm. Each of the chirped mirrors (Layertec, Germany) provides an average group-dispersion delay (GDD) of about 60 fs2 per bounce at 800 nm. Chirped mirrors in our laser cavity provide a flat GDD profile over a broad spectral band. The level of GDD is controlled by the prism separation and can be tuned from negative to positive values. Such a laser oscillator can deliver pulses with a typical temporal width of about 30 fs, an energy up to 5 nJ at a pulse repetition rate of 100 MHz and a central wavelength of 800 nm.

Photonic-crystal fibers employed for supercontinuum generation in this study were fabricated of fused silica using a standard stack-and-draw technique [1

1. P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003). [CrossRef] [PubMed]

, 2

2. J. C. Knight, “Photonic crystal fibers,” Nature 424, 847–851 (2003). [CrossRef] [PubMed]

]. The cross-section view of the PCF is presented in inset 1 to Fig. 1. The fiber cladding, as can be seen from Fig. 1, is characterized by a high air-filling fraction, strongly confining laser radiation to the fiber core. The comma-like shape of the fiber core allows the existence of two types of well-localized guided modes with bell-shaped field intensity profiles reaching their peak values at the center of the mode (insets 2 and 3 in Fig. 1). Images of beam patterns typical of the first-type modes from this family are presented in Figs. 2(a)2(c). Field intensity profiles for this type of modes have a shape of distorted circles (inset 2 in Fig. 1), with transverse mode sizes measured along two orthogonal directions in the cross section of the fiber being very close to each other. The group-velocity dispersion (GVD) calculated for this type of modes as a function of the radiation wavelength using the finite-element method (FEM) is shown by curve 1 in Fig. 1. The zero GVD wavelength is 783 nm in this case, lying close to the central wavelength of Ti: sapphire laser pulses used in our experiments.

The modes of the second type have elliptical field intensity profiles (inset 3 in [1 and Figs. 2(d)2(f)], with the long axis of the elliptical beam pattern oriented along the tail of the comma-shaped fiber core. The zero-GVD wavelength for this type of modes is 630 nm (curve 2 in Fig. 1), providing anomalous dispersion for Ti: sapphire laser pulses. The two types of modes considered here could be easily discriminated one against another (see Figs. 2(a)2(f)) by displacing the input end of the fiber with respect to the laser beam in the transverse plane. To facilitate selective excitation of these modes, the PCF was placed on a three-dimensional translation stage. A 40x lens was used to couple laser radiation into the PCF. The PCF output was collimated with an identical lens and was studied with an Ando spectrum analyzer.

Our FEM analysis shows that the PCF used in our experiments can also support other guided modes with more complicated field intensity profiles. However, with the fiber axis aligned with the input beam, the efficiency of radiation coupling into those modes was at least a factor of 9 lower than that for the first- and second-type modes shown in Fig. 2. Within the entire visible and near-IR spectral ranges, we did not observe any significant deviations of spatial beam profiles measured at PCF output from the field intensity patterns predicted for the modes of the first and second type. Finally, the most intense spectral components dominating the output PCF spectra in our experiments were adequately explained by numerical simulations including only the modes of the first and second types. All these results suggest that the influence of higher order modes in our experiments was very weak.

3. Results and discussion

Fig. 1. Group-velocity dispersion for the modes of the first (1) and second (2) type for the photonic-crystal fiber with a comma-shaped core shown in inset 1. Field intensity profiles in the first- and second-type modes are shown in insets 2 and 3.

Fig. 2. Beam patterns of the first (a, b, c) and second (d, e, f) type modes at the output of the photonic-crystal fiber with a comma-shaped core with a peak power of the input field of (a, d) 8 kW, (b, e) 11 kW, and (c, f) 14 kW.
Fig. 3. Side images of the photonic-crystal fiber with a comma-shaped core generating supercontinuum in the first (a, b, c) and second (d, e, f) type modes with a peak power of the input field of (a, d) 8 kW, (b, e) 11 kW, and (c, f) 14 kW.

For the mode of the second type, the spectrum of the input field lies in the region of anomalous dispersion. High-order dispersion effects induce efficient blue-shifted emission in the visible already at the initial stage of spectral transformation of the laser field in the PCF [(Fig. 5(b)]. The central wavelength of dispersive-wave emission, which takes place in the regime of Cherenkov radiation [29

29. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995). [CrossRef] [PubMed]

], is controlled by phase matching between the parent soliton and the emitted dispersive wave. The phase-matching condition providing a resonant energy exchange between a soliton with a propagation constant βs and a central wavelength λ0 and a dispersive wave with a propagation constant β and a central wavelength λd is written as [29

29. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995). [CrossRef] [PubMed]

] δs = βs0) - β(λd) = 0. In the inset to Fig. 5(b), we plot the propagation-constant mismatch δs calculated as a function of radiation wavelength for the second-type PCF mode. The time duration of a soliton in these calculations was chosen on the basis of numerical simulations using the generalized nonlinear SchrÖdinger equation [27

27. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, 2001).

] and was taken equal to 50 fs. It can be seen from the results presented in the inset to Fig. 5(b) that solitons with a central wavelength around 800 nm can emit phase-matched dispersive waves with a central wavelength of about 420 nm. This prediction agrees well with the experimental PCF output spectrum, shown in Fig. 5(b). Because of the form birefringence of the PCF core, the intensities of individual spectral components in the PCF output spectrum were sensitive to the polarization of the input field, suggesting the way to switch the wavelength of the frequency-shifted PCF output [26

26. M. Hu, C.-Y. Wang, Y. Li, L. Chai, and A. M. Zheltikov, “Polarization-demultiplexed two-color frequency conversion of femtosecond pulses in birefringent photonic-crystal fibers,” Opt. Express 13, 5947–5952 (2005),http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-16-5947. [CrossRef] [PubMed]

]. For any polarization state of the input field, the central frequencies of the most intense spectral components at the output of the fiber, identified as dispersive-wave emission of solitons in the PCF, were determined by the condition of wave matching between the soliton and the dispersive wave.

Fig. 4. Spectra of the PCF output measured with 30-fs Ti: sapphire laser pulses coupled into the first (a) and second (b) type mode of the fiber. The fiber length is 2 m. The initial peak power of laser pulses is (1) 0.8 kW, (2) 5 kW, and (3) 15 kW.

Fig. 5. Spectra of the PCF output measured with 30-fs 12-kW Ti: sapphire laser pulses coupled into the first (a) and second (b) type mode of the fiber. The fiber length is 20 cm. The inset in Fig. 5(b) shows the propagation-constant mismatch δ s = β s0) – β(λd) between a soliton with a central wavelength λ0 and a dispersive wave with a central wavelength λd calculated as a function of the wavelength λd for the second-type PCF mode.

4. Conclusion

We have demonstrated in this work that a fused silica high-index-step photonic-crystal fiber with a comma-shaped core can support two different types of guided modes with bell-shaped intensity profiles. These modes are shown to efficiently transform unamplified 30-fs Ti: sapphire laser pulses into supercontinuum emission through two different physical mechanisms. The modes of the first type provide broadly spanning supercontinuum emission with a smooth spectrum stretching from 450 to 1400 nm. The initial stage of supercontinuum generation in these modes involves four-wave mixing around the wavelength of zero group-velocity dispersion, leading to the depletion of the pump field. The modes of the second type generate supercontinuum with an enhanced short-wavelength wing, dominated by intense spectral lines centered at 400–450 nm. The two regimes of supercontinuum generation and the two types of output spectra are switched by displacing the input end of the fiber with respect to the laser beam in the transverse direction.

Acknowledgments

We are grateful to Fiberhome Telecommunication Tech Co. Ltd (430074 Wuhan, China) for providing PCF samples. Useful discussions with E.E. Serebryannikov are gratefully acknowledged. This study was supported in part by the Russian Foundation for Basic Research, the Russian Federal Research and Technology Program (contract no. 02.434.11.2010), INTAS (projects nos. 03–51–5037 and 03–51–5288), the US Civilian Research and Development Foundation for the Independent States of the Former Soviet Union (award no. RP2–2558), National Key Basic Research Special Foundation (project no. 2003CB314904), National Nature Science Foundation of China (project no. 60278003), and National High-Technology Program of China (project no. 2003AA311010).

References and links

1.

P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003). [CrossRef] [PubMed]

2.

J. C. Knight, “Photonic crystal fibers,” Nature 424, 847–851 (2003). [CrossRef] [PubMed]

3.

A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibres (Kluwer Academic Publishers, Boston, 2003). [CrossRef]

4.

A. M. Zheltikov, ed. Photonic Crystals, Appl. Phys. B81, nos. 2/3 (2005). [CrossRef]

5.

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000). [CrossRef]

6.

W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Mann, and P. St. J. Russell, “Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,” J. Opt. Soc. Am. B 19, 2148–2155 (2002). [CrossRef]

7.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000). [CrossRef] [PubMed]

8.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000). [CrossRef] [PubMed]

9.

S. O. Konorov and A. M. Zheltikov, “Frequency conversion of subnanojoule femtosecond laser pulses in a microstructure fiber for photochromism initiation,” Opt. Express 11, 2440–2445 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-19-2440 [CrossRef] [PubMed]

10.

Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002). [CrossRef] [PubMed]

11.

S. O. Konorov, D. A. Akimov, E. E. Serebryannikov, A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, “Cross-correlation FROG CARS with frequency-converting photonic-crystal fibers,” Phys. Rev. E 70, 057601 (2004). [CrossRef]

12.

H. N. Paulsen, K. M. HilligsØe, J. ThØgersen, S. R. Keiding, and J. J. Larsen, “Coherent anti-stokes Raman scattering microscopy with a photonic crystal fiber based light source,” Opt. Lett. 28, 1123–1125 (2003). [CrossRef] [PubMed]

13.

A. Baltuska, T. Fuji, and T. Kobayashi, “Self-referencing of the carrier-envelope slip in a 6-fs visible parametric amplifier,” Opt. Lett. 27, 1241–1243 (2002). [CrossRef]

14.

A. Baltuska, T. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, C. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421, 611–615 (2003). [CrossRef] [PubMed]

15.

C. Y. Teisset, N. Ishii, T. Fuji, T. Metzger, S. KÖhler, R. Holzwarth, A. Baltuska, A. M. Zheltikov, and F. Krausz, “Soliton-based pump.seed synchronization for few-cycle OPCPA,” Opt. Express 13, 6550–6557 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-17-6550 [CrossRef] [PubMed]

16.

Hartl, X. D. Li, C. Chudoba, R. K. Rhanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26, 608–610 (2001). [CrossRef]

17.

A. B. Fedotov, A. M. Zheltikov, A. P. Tarasevitch, and D. von der Linde, “Enhanced spectral broadening of short laser pulses in high-numerical-aperture holey fibers,” Appl. Phys. B 73, 181–184 (2001). [CrossRef]

18.

D. A. Akimov, E. E. Serebryannikov, A. M. Zheltikov, M. Schmitt, R. Maksimenka, W. Kiefer, K. V. Dukel’skii, V. S. Shevandin, and Yu. N. Kondrat’ev, “Efficient anti-Stokes generation through phase-matched four wave mixing in higher-order modes of a microstructure fiber,” Opt. Lett. 28, 1948–1950 (2003). [CrossRef] [PubMed]

19.

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325–1327 (2000). [CrossRef]

20.

T. P. Hansen, J. Broeng, S. E.B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588–590 (2001). [CrossRef]

21.

M. J. Steel and J. R. M. Osgood, “Elliptical-hole photonic crystal fibers,” Opt. Lett. 26, 229–231 (2001). [CrossRef]

22.

A. Apolonski, B. Povazay, A. Unterhuber, W. Drexler, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, “Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses,” J. Opt. Soc. Am. B 19, 2165–2170 (2002). [CrossRef]

23.

M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82, 2197–2199 (2003). [CrossRef]

24.

M. Hu, C.-Y. Wang, Y. Li, Z. Wang, L. Chai, and A. M. Zheltikov, “Polarization- and mode-dependent anti-Stokes emission in a birefringent microstructure fiber,” IEEE Photonics Technol. Lett. 17, 630–632 (2005). [CrossRef]

25.

M. L. Hu, C. Y. Wang, L. Chai, and A. M. Zheltikov, “Frequency-tunable anti-Stokes line emission by eigenmodes of a birefringent microstructure fiber,” Opt. Express 12, 1932–1937 (2004),http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1932 [CrossRef] [PubMed]

26.

M. Hu, C.-Y. Wang, Y. Li, L. Chai, and A. M. Zheltikov, “Polarization-demultiplexed two-color frequency conversion of femtosecond pulses in birefringent photonic-crystal fibers,” Opt. Express 13, 5947–5952 (2005),http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-16-5947. [CrossRef] [PubMed]

27.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, 2001).

28.

P. A. wai, H. H. Chen, and Y. C. Lee, “Radiations by solitons at the zero group-dispersion wavelength of singlemode optical fibers,” Phys. Rev. A 41, 426–439 (1990). [CrossRef] [PubMed]

29.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995). [CrossRef] [PubMed]

30.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by Fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002). [CrossRef] [PubMed]

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.7110) Nonlinear optics : Ultrafast nonlinear optics

ToC Category:
Nonlinear Optics

History
Original Manuscript: January 9, 2006
Revised Manuscript: February 13, 2006
Manuscript Accepted: February 18, 2006
Published: March 6, 2006

Citation
Ming-Lie Hu, Ching-Yue Wang, Yan-Feng Li, Lu Chai, and Aleksei M. Zheltikov, "Tunable supercontinuum generation in a high-index-step photonic-crystal fiber with a comma-shaped core," Opt. Express 14, 1942-1950 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-5-1942


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. St. J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003). [CrossRef] [PubMed]
  2. J. C. Knight, "Photonic crystal fibers," Nature 424, 847-851 (2003). [CrossRef] [PubMed]
  3. A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibres (Kluwer Academic Publishers, Boston, 2003). [CrossRef]
  4. A. M. Zheltikov, ed. Photonic Crystals, Appl. Phys. B 81, nos. 2/3 (2005). [CrossRef]
  5. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000). [CrossRef]
  6. W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Mann, and P. St. J. Russell, "Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source," J. Opt. Soc. Am. B 19, 2148-2155 (2002). [CrossRef]
  7. R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000). [CrossRef] [PubMed]
  8. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000). [CrossRef] [PubMed]
  9. S. O. Konorov and A. M. Zheltikov, "Frequency conversion of subnanojoule femtosecond laser pulses in a microstructure fiber for photochromism initiation," Opt. Express 11,2440-2445 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-19-2440 [CrossRef] [PubMed]
  10. Th. Udem, R. Holzwarth, and T. W. Hänsch, "Optical frequency metrology," Nature 416,233-237 (2002). [CrossRef] [PubMed]
  11. S. O. Konorov, D. A. Akimov, E. E. Serebryannikov, A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, "Cross-correlation FROG CARS with frequency-converting photonic-crystal fibers," Phys. Rev. E 70, 057601 (2004). [CrossRef]
  12. H. N. Paulsen, K. M. Hilligsøe, J. Thøgersen, S. R. Keiding, and J. J. Larsen, "Coherent anti-stokes Raman scattering microscopy with a photonic crystal fiber based light source," Opt. Lett. 28, 1123-1125 (2003). [CrossRef] [PubMed]
  13. A. Baltuska, T. Fuji, and T. Kobayashi, "Self-referencing of the carrier-envelope slip in a 6-fs visible parametric amplifier," Opt. Lett. 27, 1241-1243 (2002). [CrossRef]
  14. A. Baltuska, T. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, C. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, "Attosecond control of electronic processes by intense light fields," Nature 421,611-615 (2003). [CrossRef] [PubMed]
  15. C. Y. Teisset, N. Ishii, T. Fuji, T. Metzger, S. Köhler, R. Holzwarth, A. Baltuska, A. M. Zheltikov, and F. Krausz, "Soliton-based pump.seed synchronization for few-cycle OPCPA," Opt. Express 13,6550-6557 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-17-6550 [CrossRef] [PubMed]
  16. I. Hartl, X. D. Li, C. Chudoba, R. K. Rhanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001). [CrossRef]
  17. A. B. Fedotov, A. M. Zheltikov, A. P. Tarasevitch, and D. von der Linde, "Enhanced spectral broadening of short laser pulses in high-numerical-aperture holey fibers," Appl. Phys. B 73,181-184 (2001). [CrossRef]
  18. D. A. Akimov, E. E. Serebryannikov, A. M. Zheltikov, M. Schmitt, R. Maksimenka, W. Kiefer, K. V. Dukel'skii, V. S. Shevandin, Yu. N. Kondrat'ev, "Efficient anti-Stokes generation through phase-matched four wave mixing in higher-order modes of a microstructure fiber," Opt. Lett. 28, 1948-1950 (2003). [CrossRef] [PubMed]
  19. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, "Highly birefringent photonic crystal fibers," Opt. Lett. 25, 1325-1327 (2000). [CrossRef]
  20. T. P. Hansen, J. Broeng, S. E.B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, "Highly birefringent index-guiding photonic crystal fibers," IEEE Photon. Technol. Lett. 13, 588-590 (2001). [CrossRef]
  21. M. J. Steel and J. R. M. Osgood, "Elliptical-hole photonic crystal fibers," Opt. Lett. 26,229-231 (2001). [CrossRef]
  22. A. Apolonski, B. Povazay, A. Unterhuber, W. Drexler, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, "Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses," J. Opt. Soc. Am. B 19, 2165-2170 (2002). [CrossRef]
  23. M. Lehtonen, G. Genty, H. Ludvigsen, M. Kaivola, "Supercontinuum generation in a highly birefringent microstructured fiber," Appl. Phys. Lett. 82,2197-2199 (2003). [CrossRef]
  24. M. Hu, C.-Y. Wang,Y. Li, Z. Wang, L. Chai, and A. M. Zheltikov, "Polarization- and mode-dependent anti-Stokes emission in a birefringent microstructure fiber," IEEE Photonics Technol. Lett. 17, 630-632 (2005). [CrossRef]
  25. M. L. Hu, C. Y. Wang, L. Chai, and A. M. Zheltikov, "Frequency-tunable anti-Stokes line emission by eigenmodes of a birefringent microstructure fiber," Opt. Express 12,1932-1937 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1932 [CrossRef] [PubMed]
  26. M. Hu, C.-Y. Wang, Y. Li, L. Chai, and A. M. Zheltikov, "Polarization-demultiplexed two-color frequency conversion of femtosecond pulses in birefringent photonic-crystal fibers," Opt. Express 13,5947-5952 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-16-5947. [CrossRef] [PubMed]
  27. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, 2001).
  28. P. A. Wai, H. H. Chen, Y. C. Lee, "Radiations by solitons at the zero group-dispersion wavelength of singlemode optical fibers," Phys. Rev. A 41, 426-439 (1990). [CrossRef] [PubMed]
  29. N. Akhmediev, and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995). [CrossRef] [PubMed]
  30. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, G. Korn, "Experimental evidence for supercontinuum generation by Fission of higher-order solitons in photonic fibers," Phys. Rev. Lett. 88, 173901 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited