OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 6 — Mar. 20, 2006
  • pp: 2228–2235
« Show journal navigation

Perfect lens makes a perfect trap

Zhaolin Lu, Janusz A. Murakowski, Christopher A. Schuetz, Shouyuan Shi, Garrett J. Schneider, Jesse P. Samluk, and Dennis W. Prather  »View Author Affiliations


Optics Express, Vol. 14, Issue 6, pp. 2228-2235 (2006)
http://dx.doi.org/10.1364/OE.14.002228


View Full Text Article

Acrobat PDF (391 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this work, we present for the first time a new and realistic application of the “perfect lens”, namely, electromagnetic traps (or tweezers). We combined two recently developed techniques, 3D negative refraction flat lenses (3DNRFLs) and optical tweezers, and experimentally demonstrated the very unique advantages of using 3DNRFLs for electromagnetic traps. Super-resolution and short focal distance of the flat lens result in a highly focused and strongly convergent beam, which is a key requirement for a stable and accurate electromagnetic trap. The translation symmetry of 3DNRFL provides translation-invariance for imaging, which allows an electromagnetic trap to be translated without moving the lens, and permits a trap array by using multiple sources with a single lens. Electromagnetic trapping was demonstrated using polystyrene particles in suspension, and subsequent to being trapped to a single point, they were then accurately manipulated over a large distance by simple movement of a 3DNRFL-imaged microwave monopole source.

© 2006 Optical Society of America

1. Introduction

One of the fundamental phenomena in optics is refraction, wherein naturally occurring materials obey Snell’s law as a result of having positive refractive indices. However, in the 1960s, Veselago considered a notional material that had a negative refraction and proposed its use as a flat lens.[1

1. V.G. Veselago, “The electrodynamics of substances with simultaneously negative values of permittivity and permeability,” Sov. Phys. Usp. 10,509(1968). [CrossRef]

] Within the last several years, work on metamaterials[2

2. J.B. Pendry, A.J. Holden, W.J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996). [CrossRef] [PubMed]

,3

3. J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Techniques 47, 2075–2084 (1999). [CrossRef]

,4

4. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184 (2000). [CrossRef] [PubMed]

,5

5. R.A. Shelby, D.R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction.” Science 292, 77–79 (2001). [CrossRef] [PubMed]

] and ‘perfect lenses’[6

6. J.B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef] [PubMed]

] revived Veselago’s ideas and trigged intense discussions. Meanwhile, negative refraction was also investigated in photonic crystals (PhCs) by engineering their dispersion properties.[7

7. M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696–10705 (2000). [CrossRef]

] Along these lines, experiments have demonstrated negative refraction and imaging based on negative refraction by two-dimensional PhC flat lenses.[8

8. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C.M. Soukoulis, “Electromagnetic wave: negative refraction by photonic crystals,” Nature , 423, 604–605 (2003). [CrossRef] [PubMed]

,9

9. P.V. Parimi, W.T. Lu, P. Vodo, and S. Sridhar, “Photonic crystals: imaging by flat lens using negative refraction,” Nature , 426, 404 (2003). [CrossRef] [PubMed]

] More recently, we demonstrated experimentally subwavelength imaging at microwave frequencies with a three-dimensional (3D) PhC flat lens that exhibited a full 3D negative refraction.[10

10. Z. Lu, J.A. Murakowski, C.A. Schuetz, S. Shi, G.J. Schneider, and D.W. Prather, “Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies,” Phys. Rev. Lett. 95, 153901(4) (2005). [CrossRef] [PubMed]

,11

11. Z. Lu, S. Shi, C.A. Schuetz, J.A. Murakowski, and D.W. Prather, “Three-dimensional photonic crystal flat lens by full 3D negative refraction,” Opt. Express 13, 5592–5599 (2005). [CrossRef] [PubMed]

] As negative-index materials are rewriting the laws of optics, they may allow for the realization of a lens having flat surfaces, no optical axis, and a resolution independent of working wavelength. These merits will find significant applications in a wide variety of disciplines. Herein, we demonstrate one potential application of the negative-refraction flat lens in a novel technique, optical tweezers, [12

12. A. Ashkin, “Trapping of Atoms by Resonance Radiation Pressure,” Phys. Rev. Lett. 40, 729–732 (1978). [CrossRef]

,13

13. A. Ashkin, J.M. Dziedzic, J.E. Brjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986). [CrossRef] [PubMed]

] where super-resolution and field-curvature-free systems are especially beneficial. Using a full-3D negative-refraction lens, we have been able to demonstrate, for the first time, electromagnetic gradient force trapping, similar to that of optical tweezers, but at microwave frequencies. The negative-refraction flat lens provides a unique mechanism to create a highly focused, strongly convergent beam independent of a single optical axis. This technique allowed us to stably trap and accurately manipulate a variety of neutral dielectric particles by simple movement of an imaged microwave source over a field-of-view not limited by imaging aberrations. The far-reaching implications of this work include a novel mechanism for using gradient forces as arrays of manipulations [14

14. E.R. Dufresne and D.G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69, 1974 (1998). [CrossRef]

] through a single lens—for example in fluidic systems particles can be manipulated by arrays of sources.

The belief that light carries momentum and therefore can exert force on electrically neutral objects by momentum transfer dates back to Kepler, Newton and Maxwell. However, the radiation force had not attracted much interest until the invention of lasers, which can generate light of extremely high intensity and thus exert a significant force on small neutral particles. This capability enables an unprecedented tool to trap and manipulate small particles ranging in size from the micrometer-scale down to molecules and atoms,[15

15. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970). [CrossRef]

, 16

16. A. Ashkin and J.M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971). [CrossRef]

] as well as to drive specially designed particles as sensitive nano-probes.[17

17. R.M. Simmons, J.T. Finer, S. Chu, and J.A. Spudich, “Quantitative measurements of force and displacement using an optical trap,” Biophys. J. 70, 1813-22 (1996). [CrossRef] [PubMed]

,18

18. K. Visscher, S.P. Gross, and S.M. Block, “Construction of multiple-beam optical traps with nanometer-resolution position sensing,” IEEE J. Sel. Top. Quantum Electron. 2, 1066–1076 (1996). [CrossRef]

] The techniques based on radiation force have found applications in a wide range of fields including biomedical science, atomic physics, quantum optics, isotope separation, and planetary physics. One of the most successful applications is the use of optical tweezers,[12,13] which relies on a single-beam gradient-force trap. In biology, optical tweezers are widely used for their ability to nondestructively manipulate small particles ranging in size from tens of nanometers to tens of micrometers.[19

19. A. Ashkin and J.M. Dziedzic, “Optical Trapping and Manipulation of Viruses and Bacteria,” Science 235, 1517?1520 (1987). [CrossRef] [PubMed]

, 20

20. A. Ashkin, J.M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature (London) 330,769–771 (1987). [CrossRef]

, 21

21. W.H. Wright, G.J. Sonek, Y. Tadir, and M.W. Berns, “Laser trapping in cell biology,” IEEE Journal of Quantum Electronics 26, 2148–2157 (1990). [CrossRef]

] In atomic physics, optical tweezers have found applications in cooling atoms to record low temperatures and trapping atoms at high densities.[13

13. A. Ashkin, J.M. Dziedzic, J.E. Brjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986). [CrossRef] [PubMed]

, 22

22. S. Chu, L. Holberg, J.E. Bjorkholm, A. Cable, and A. Ashkin, “Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure,” Phys. Rev. Lett. 55, 48–51(1985). [CrossRef] [PubMed]

, 23

23. S. Chu, J.E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental Observation of Optically Trapped Atoms,” Phys. Rev. Lett. 57, 314–317 (1986). [CrossRef] [PubMed]

] To implement the optical tweezers for achieving a stable trap, one requires a highly focused and strongly convergent laser beam, [13

13. A. Ashkin, J.M. Dziedzic, J.E. Brjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986). [CrossRef] [PubMed]

] which is often realized through a microscope system and is limited by the working wavelength and numerical aperture (N.A.). To manipulate or “tweeze” particles in a large field of view, the system is required to be devoid of field curvature. However, high N.A. and small field curvature are often incompatible in a conventional optical system. In practice, optical tweezers are very expensive, custom-built instruments that require a working knowledge of microscopy, optics, and laser techniques. These requirements limit the application of optical tweezers. However, the invention of the negative-refraction flat lens could potentially overcome the shortcomings of conventional optical systems and further advance this technique. The combination of super-resolution (high N.A.) and lack of an optical axis provide a superbly focused beam in a system with translation symmetry (absence of field curvature) and enable an optical tweezers array using a single lens. In this article, we validate this concept in the microwave regime by demonstrating the application of negative-refraction flat lens based on 3D PhC to manipulate small objects.

2. Three-dimensional subwavelength imaging by full 3D negative refraction

Fig. 1. (a) Three-dimensional PhC fabricated layer by layer (20 layers in total). The inset shows a conventional cubic unit cell of the bcc structure. (b) Band structure of the bcc lattice PhC.

Fig. 2. Image of the optimized monopole source achieved through the 3D PhC flat lens at 39mm away from the source (the lens is 25mm thick). The outlined region shows the area of the image where the intensity was>0.5 max.

To create a highly efficient point source, we constructed a monopole using a section of a coaxial cable (50 ohm, 1.8mm in diameter) by first exposing a long section of core at the end, and then progressively cutting it until optimal radiation efficiency was achieved in the frequency range of interest. We placed the monopole source at the lens center, 1 mm away from its surface. A monopole detector was employed for characterizing the image formed by the flat lens. Both the source and the detector were connected to a vector network analyzer (VNA). By spatially scanning the detector, we obtained good images in the 15.9GHz~17.1GHz frequency range. Figure 2 shows the image of the source when the working frequency is set to f=16.3GHz. The image size is found to be only 6.5 mm in diameter or 0.35λ (wavelength λ=18.4 mm) using the full width at half maximum (FWHM) criterion. The image is located 39 mm away from the source (the flat lens is 25 mm thick). By adjusting the image distance ±2 mm, good images with diameter 6.0mm~7.0mm for other frequencies in this range (15.9GHz~17.1GHz) are also observed.

3. Trapping and manipulation of particles

In the Rayleigh scattering regime (λ >> r, where r is the radius of the particle.), the radiation force acting on a dielectric particle can be explained as the interaction between the polarized particle and the applied electric field. The radiation force produced by a focused beam has two components: scattering force and gradient force. Optical tweezers rely on the gradient force, which is proportional to the dipole moment of the particle and the gradient of power density.[25

25. J.P. Gordon, “Radiation forces and momenta in dielectric media,” Phys. Rev. A 8, 14–21(1973). [CrossRef]

] For a spherical particle in a dielectric liquid medium, the total dipole moment can be shown to take the form p=4πr3εb(εaεbεa+2εb)E,[26

26. See for example, D.J. Griffiths, Introduction to Electrodynamics (2nd edition), pp. 180–182, Prentice Hall, New Jersey (1989).

] where εa and εb are the dielectric constants of the particle and the medium, respectively, and E is the applied electric field. For simplicity, we approximate the beam focused by the flat lens as a Gaussian beam. In this case, the maximum gradient force is Fgradr3εb(εaεbεa+2εb)PW03, [27

27. Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996). [CrossRef]

] and the resulting gradient acceleration is aεb(εaεbεa+2εb)PW03, where P is the power and W 0 is the diameter of the beam waist. Since the acceleration is inversely proportional to the cube of the beam width, squeezing the beam size is a very efficient way to increase the acceleration, and thus improve the particle trapping.

Fig. 3. The schematic of the basic apparatus used for the microwave tweezers. The inset shows the polarization of the electric field with regard to the PhC.

To this end, we established our experimental setup as illustrated in Fig.3. A 10-watt amplifier is employed to amplify the electromagnetic waves from a local oscillator, which, in our case, is a vector network analyzer. The source monopole is connected to the output port of the amplifier through a coaxial cable and an isolator to prevent back-reflection. The flat lens is placed 1 mm above the monopole with the orientation as shown in the inset. A 10-mm air gap is formed using a thin petri dish and the sample is contained in another petri dish. Both petri dishes are optically transparent, so we can see the sample and the flat lens at the same time. By tuning the frequency, the focused image of the monopole source can be located directly at the bottom of the sample dish. A stereomicroscope with a digital video camera was employed to record our experimental results.

The sample used in our experiment consists polystyrene particles dispersed in a liquid medium, dioxane (1, 4-dioxane: C4H8O2). Dioxane has dielectric constant εb=2.1, compared to polystyrene εa=2.6; the inequality εab ensures the presence of a trapping force. More importantly, dioxane molecules are nonpolar and the material is transparent at microwave frequencies and therefore exhibits very low absorption—we measured its loss tangent to be 2×10-3 in the 16.0 GHz~17.0 GHz frequency range. In addition, the density of dioxane is 1.035g/cm3, which is very close to that of polystyrene, 1.04g/cm3. This helps in decreasing the effect of gravity and reduces the friction of particles that have sunk to the bottom of the container.

Fig. 4. (a,b) Microwave electromagnetic trapping of neutral particles through a negative-refraction flat lens [Media 1]. (c, d) Microwave electromagnetic dragging of neutral particles along the vertical axis [Media 2]. Based on the result shown in Fig. 4(a,b), the monopole source has moved 10mm along the vertical axis. (e,f) Microwave electromagnetic dragging of neutral particles along the horizontal axis. Based on the result shown in Fig. 4(c,d), the monopole source has moved 6mm along the horizontal axis [Media 3].

To further demonstrate the trapping and the ability to manipulate particles, we translated our monopole source 10.0 mm along the vertical axis without moving the lens itself. Figure 4 (c, d) and Movie 2 show that the cluster first splits into small groups, which are then pulled to a new position where the cluster is reconstructed. In this process, the particles are dragged 9.2 mm along the vertical axis. When we translated our monopole source 6.0 mm along the horizontal axis, the particles were again following the monopole image, as shown in Fig. 4 (e, f) and Movie 3. Notice that the cluster size changes little as it moves over long distances. This is expected—because the flat lens has translation symmetry for imaging and is devoid of a unique optical axis, as a result there is no field curvature and the quality of the monopole image is independent on its lateral position. This is a very advantageous property for trapping as it also allows for effective manipulation without lens movement. In addition, the flat lens provides a novel mechanism for using gradient forces not only as traps but also as arrays of manipulations (optical tweezers) through a single lens— for example in fluidic systems particles can be manipulated by arrays of sources turned on and off sequentially to affect their movement. In contrast, in a conventional system arrays of optical tweezers are realized by arrays of lenses, which have the limitations of a fixed array pattern and element spacing restricted by the lens size. [14

14. E.R. Dufresne and D.G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69, 1974 (1998). [CrossRef]

]

Fig. 5. Microwave electromagnetic trapping of neutral particles with different sizes. The average diameter of the large particles and that of the small particles are 100μm and 600μm, respectively. Two circles are used to track the motion of particles. [Media 4]

4. Discussion

The power fed to the monopole is measured to be 7.0 watts in the 16.0GHz~17.0GHz frequency range. Since about 50% of the radiated power is focused to form the image (the other half radiates away from the lens), the total power on the image side is roughly 3.5 watts. Using W 0=6.5 mm in the Gaussian beam approximation, we calculated the maximum acceleration due to the gradient force to be 40 μm/s2, while that due to the scattering force is less than 1 nm/s2, which is negligible. When a particle is accelerated, a retarding force to the motion will occur due to the viscosity of the liquid—the higher the speed, the stronger the retarding force. As a result, the particle reaches terminal velocity, which can be estimated by Stokes’ law, and in our case it is expected to be less than 1 μm/s. However, the maximum speed we observed is considerably higher than this estimate. This discrepancy may be attributed to the interaction among a large number of particles, i.e., a collective dragging effect similar to drafting known and exploited by drivers/riders in competitive car/bike racing.

To investigate the reason for the unexpected velocity increase more closely, we tested another sample consisting of polystyrene particles with two different sizes, Ø100μm and Ø600μm, mixed together and dispersed in 4-mm-deep dioxane. We repeated the experiment, and recorded the motion of the particles as shown in Fig. 5 and Movie 4 where it is clear that both types of particles are attracted to the center. However, it is also clear that large particles move faster than small particles. This result supports the hypothesis of electromagnetic trapping: if the motion of the particles were driven, for example, by the thermal convection of the liquid, then their speed would be independent of the particle size. In contrast, the electromagnetic trapping force on a particle is proportional to r 3 while the retarding force is proportional to vr (according to Stokes’ law), where v is the speed of the particle and r is its radius. The balance of the trapping force and the retarding force results in the terminal speed vtr 2. In other words larger particles will move faster through viscous fluid when driven by electromagnetic tweezers force. In the case of small particles, as several of them cluster together, they behave as a single larger particle with the corresponding increase of terminal speed. Movie 2 reveals this effect clearly: larger groups move faster than smaller groups during the migration process.

5. Conclusion

In conclusion, we experimentally demonstrated microwave electromagnetic trapping and manipulation of neutral particles using a negative-refraction flat lens. The advantages of the flat lens, including super-resolution and the absence of field-curvature, play an essential role in improving the overall performance of such electromagnetic tweezers. Although this experiment was carried out in the microwave regime, the technique is suitable for optical wavelengths, where the gradient acceleration is expected to increase by twelve orders of magnitude according to the formula aεb(εaεbεa+2εb)PW03 when the same level of power is applied. However, in optical regime the challenge lies in the fabrication of such a full-3D negative-refraction flat lens. Recent progress in 3D micro-fabrication is promising to overcome this challenge.[28

28. M. Campbell, D.N. Sharp, M.T. Harrison, R.G. Denning, and A.J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature (London) 404, 53–56 (2000). [CrossRef]

, 29

29. S. Venkataraman, G.J. Schneider, J.A. Murakowski, S. Shi, and D.W. Prather, “Fabrication of three-dimensional photonic crystals using silicon micromachining,” Appl. Phys. Lett. 85, 2125 (2004). [CrossRef]

, 30

30. P. Yao, G.J. Schneider, B. Miao, J. Murakowski, and D.W. Prather, “Multilayer three-dimensional photolithography with traditional planar method,” Appl. Phys. Lett. 85, 3920 (2004). [CrossRef]

] For optical wavelengths, the flat lens would become a thin patterned film, which would provide a focused beam with size limited only by the size of the source. It is expected that the use of a flat lens for optical tweezers will give rise to more widespread application of the technique.

Further work will demonstrate that the migration route of particles can be controlled by a source array. Neither physical motion on the sources nor on the lens is required to manipulate the particles. We will report this in the future.

Acknowledgments

We would like to acknowledge the support of Dr. Gernot Pomrenke from the Air Force Office of Scientific Research (AFOSR) and helpful discussion with Iftekhar O. Mirza, Timothy R. Hodson, and Dr. Changjun Huang.

References and links

1.

V.G. Veselago, “The electrodynamics of substances with simultaneously negative values of permittivity and permeability,” Sov. Phys. Usp. 10,509(1968). [CrossRef]

2.

J.B. Pendry, A.J. Holden, W.J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996). [CrossRef] [PubMed]

3.

J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Techniques 47, 2075–2084 (1999). [CrossRef]

4.

D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184 (2000). [CrossRef] [PubMed]

5.

R.A. Shelby, D.R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction.” Science 292, 77–79 (2001). [CrossRef] [PubMed]

6.

J.B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef] [PubMed]

7.

M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696–10705 (2000). [CrossRef]

8.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C.M. Soukoulis, “Electromagnetic wave: negative refraction by photonic crystals,” Nature , 423, 604–605 (2003). [CrossRef] [PubMed]

9.

P.V. Parimi, W.T. Lu, P. Vodo, and S. Sridhar, “Photonic crystals: imaging by flat lens using negative refraction,” Nature , 426, 404 (2003). [CrossRef] [PubMed]

10.

Z. Lu, J.A. Murakowski, C.A. Schuetz, S. Shi, G.J. Schneider, and D.W. Prather, “Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies,” Phys. Rev. Lett. 95, 153901(4) (2005). [CrossRef] [PubMed]

11.

Z. Lu, S. Shi, C.A. Schuetz, J.A. Murakowski, and D.W. Prather, “Three-dimensional photonic crystal flat lens by full 3D negative refraction,” Opt. Express 13, 5592–5599 (2005). [CrossRef] [PubMed]

12.

A. Ashkin, “Trapping of Atoms by Resonance Radiation Pressure,” Phys. Rev. Lett. 40, 729–732 (1978). [CrossRef]

13.

A. Ashkin, J.M. Dziedzic, J.E. Brjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986). [CrossRef] [PubMed]

14.

E.R. Dufresne and D.G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69, 1974 (1998). [CrossRef]

15.

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970). [CrossRef]

16.

A. Ashkin and J.M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971). [CrossRef]

17.

R.M. Simmons, J.T. Finer, S. Chu, and J.A. Spudich, “Quantitative measurements of force and displacement using an optical trap,” Biophys. J. 70, 1813-22 (1996). [CrossRef] [PubMed]

18.

K. Visscher, S.P. Gross, and S.M. Block, “Construction of multiple-beam optical traps with nanometer-resolution position sensing,” IEEE J. Sel. Top. Quantum Electron. 2, 1066–1076 (1996). [CrossRef]

19.

A. Ashkin and J.M. Dziedzic, “Optical Trapping and Manipulation of Viruses and Bacteria,” Science 235, 1517?1520 (1987). [CrossRef] [PubMed]

20.

A. Ashkin, J.M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature (London) 330,769–771 (1987). [CrossRef]

21.

W.H. Wright, G.J. Sonek, Y. Tadir, and M.W. Berns, “Laser trapping in cell biology,” IEEE Journal of Quantum Electronics 26, 2148–2157 (1990). [CrossRef]

22.

S. Chu, L. Holberg, J.E. Bjorkholm, A. Cable, and A. Ashkin, “Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure,” Phys. Rev. Lett. 55, 48–51(1985). [CrossRef] [PubMed]

23.

S. Chu, J.E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental Observation of Optically Trapped Atoms,” Phys. Rev. Lett. 57, 314–317 (1986). [CrossRef] [PubMed]

24.

C. Luo, S.G. Johson, J.D. Joannopoulos, and J.B. Pendry, “All-angle negative refraction in a three-dimensionally periodic photonic crystal,” Appl. Phys. Lett. 81, 2352–2354 (2002). [CrossRef]

25.

J.P. Gordon, “Radiation forces and momenta in dielectric media,” Phys. Rev. A 8, 14–21(1973). [CrossRef]

26.

See for example, D.J. Griffiths, Introduction to Electrodynamics (2nd edition), pp. 180–182, Prentice Hall, New Jersey (1989).

27.

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996). [CrossRef]

28.

M. Campbell, D.N. Sharp, M.T. Harrison, R.G. Denning, and A.J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature (London) 404, 53–56 (2000). [CrossRef]

29.

S. Venkataraman, G.J. Schneider, J.A. Murakowski, S. Shi, and D.W. Prather, “Fabrication of three-dimensional photonic crystals using silicon micromachining,” Appl. Phys. Lett. 85, 2125 (2004). [CrossRef]

30.

P. Yao, G.J. Schneider, B. Miao, J. Murakowski, and D.W. Prather, “Multilayer three-dimensional photolithography with traditional planar method,” Appl. Phys. Lett. 85, 3920 (2004). [CrossRef]

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(100.6640) Image processing : Superresolution
(110.6880) Imaging systems : Three-dimensional image acquisition
(220.3620) Optical design and fabrication : Lens system design

ToC Category:
Metamaterials

History
Original Manuscript: February 6, 2006
Revised Manuscript: March 13, 2006
Manuscript Accepted: March 14, 2006
Published: March 20, 2006

Virtual Issues
Vol. 1, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Zhaolin Lu, Janusz Murakowski, Christopher A. Schuetz, Shouyuan Shi, Garrett J. Schneider, Jesse P. Samluk, and Dennis W. Prather, "Perfect lens makes a perfect trap," Opt. Express 14, 2228-2235 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-6-2228


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V.G. Veselago, "The electrodynamics of substances with simultaneously negative values of permittivity and permeability," Sov. Phys. Usp. 10,509(1968). [CrossRef]
  2. J.B. Pendry, A.J. Holden, W.J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76,4773-4776 (1996). [CrossRef] [PubMed]
  3. J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Techniques 47,2075-2084 (1999). [CrossRef]
  4. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184 (2000). [CrossRef] [PubMed]
  5. R.A. Shelby, D.R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction." Science 292, 77-79 (2001). [CrossRef] [PubMed]
  6. J.B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  7. M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696-10705 (2000). [CrossRef]
  8. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C.M. Soukoulis, "Electromagnetic wave: negative refraction by photonic crystals," Nature,  423, 604-605 (2003). [CrossRef] [PubMed]
  9. P.V. Parimi, W.T. Lu, P. Vodo, and S. Sridhar, "Photonic crystals: imaging by flat lens using negative refraction," Nature,  426, 404 (2003). [CrossRef] [PubMed]
  10. Z. Lu, J.A. Murakowski, C.A. Schuetz, S. Shi, G.J. Schneider, and D.W. Prather, "Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies," Phys. Rev. Lett. 95, 1539014 (2005). [CrossRef] [PubMed]
  11. Z. Lu, S. Shi, C.A. Schuetz, J.A. Murakowski, and D.W. Prather, "Three-dimensional photonic crystal flat lens by full 3D negative refraction," Opt. Express 13, 5592-5599 (2005). [CrossRef] [PubMed]
  12. A. Ashkin, "Trapping of Atoms by Resonance Radiation Pressure," Phys. Rev. Lett. 40, 729-732 (1978). [CrossRef]
  13. A. Ashkin, J.M. Dziedzic, J.E. Brjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986). [CrossRef] [PubMed]
  14. E.R. Dufresne, and D.G. Grier, "Optical tweezer arrays and optical substrates created with diffractive optics," Rev. Sci. Instrum. 69, 1974 (1998). [CrossRef]
  15. A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970). [CrossRef]
  16. A. Ashkin, and J.M. Dziedzic, "Optical levitation by radiation pressure," Appl. Phys. Lett. 19, 283-285 (1971). [CrossRef]
  17. R.M. Simmons, J.T. Finer, S. Chu, and J.A. Spudich, "Quantitative measurements of force and displacement using an optical trap," Biophys. J. 70, 1813-22 (1996). [CrossRef] [PubMed]
  18. K. Visscher, S.P. Gross, and S.M. Block, "Construction of multiple-beam optical traps with nanometer-resolution position sensing," IEEE J. Sel. Top. Quantum Electron. 2, 1066-1076 (1996). [CrossRef]
  19. A. Ashkin, and J.M. Dziedzic, "Optical Trapping and Manipulation of Viruses and Bacteria," Science 235, 1517−1520 (1987). [CrossRef] [PubMed]
  20. A. Ashkin, J.M. Dziedzic, and T. Yamane, "Optical trapping and manipulation of single cells using infrared laser beams," Nature (London) 330,769-771 (1987). [CrossRef]
  21. W.H. Wright, G.J. Sonek, Y. Tadir, and M.W. Berns, "Laser trapping in cell biology," IEEE Journal of Quantum Electronics 26, 2148-2157 (1990). [CrossRef]
  22. S. Chu, L. Holberg, J.E. Bjorkholm, A. Cable, and A. Ashkin, "Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure," Phys. Rev. Lett. 55, 48-51(1985). [CrossRef] [PubMed]
  23. S. Chu, J.E. Bjorkholm, A. Ashkin, and A. Cable, "Experimental Observation of Optically Trapped Atoms," Phys. Rev. Lett. 57, 314-317 (1986). [CrossRef] [PubMed]
  24. C. Luo, S.G. Johson, J.D. Joannopoulos, and J.B. Pendry, "All-angle negative refraction in a three-dimensionally periodic photonic crystal," Appl. Phys. Lett. 81, 2352-2354 (2002). [CrossRef]
  25. J.P. Gordon, "Radiation forces and momenta in dielectric media," Phys. Rev. A 8, 14-21(1973). [CrossRef]
  26. See for example, D.J. Griffiths, Introduction to Electrodynamics (2nd edition), pp. 180-182, Prentice Hall, New Jersey (1989).
  27. Y. Harada, and T. Asakura, "Radiation forces on a dielectric sphere in the Rayleigh scattering regime," Opt. Commun. 124, 529-541 (1996). [CrossRef]
  28. M. Campbell, D.N. Sharp, M.T. Harrison, R.G. Denning, and A.J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature (London) 404, 53-56 (2000). [CrossRef]
  29. S. Venkataraman, G.J. Schneider, J.A. Murakowski, S. Shi, and D.W. Prather, "Fabrication of three-dimensional photonic crystals using silicon micromachining," Appl. Phys. Lett. 85, 2125 (2004). [CrossRef]
  30. P. Yao, G.J. Schneider, B. Miao, J. Murakowski, and D.W. Prather, "Multilayer three-dimensional photolithography with traditional planar method," Appl. Phys. Lett. 85,3920 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MPG (8945 KB)     
» Media 2: MPG (7211 KB)     
» Media 3: MPG (6157 KB)     
» Media 4: MPG (7139 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited