OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 7 — Apr. 3, 2006
  • pp: 2950–2955
« Show journal navigation

The linewidth enhancement factor α of quantum dot semiconductor lasers

Sergey Melnik, Guillaume Huyet, and Alexander V. Uskov  »View Author Affiliations


Optics Express, Vol. 14, Issue 7, pp. 2950-2955 (2006)
http://dx.doi.org/10.1364/OE.14.002950


View Full Text Article

Acrobat PDF (116 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show that the various techniques commonly used to measure the linewidth enhancement factor can lead to different values when applied to quantum dot semiconductor lasers. Such behaviour is a direct consequence of the intrinsic capture/escape dynamics of quantum dot materials and of the free carrier plasma effects. This provides an explanation for the wide range of values experimentally measured and the linewidth re-broadening recently measured.

© 2006 Optical Society of America

1. Introduction

Quantum dot (QD) semiconductor lasers have already demonstrated many interesting properties such as temperature insensitive low threshold current densities [1

1. D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (John Wiley & Sons, Chich-ester, 1999).

], high modulation band-widths [2

2. Z. Mi, P. Bhattacharya, and S. Fathpour, “High-speed 1.3μm tunnel injection quantum-dot lasers,” Appl. Phys. Lett. 86, 153109 (2005). [CrossRef]

, 3

3. M. Kuntz, G. Fiol, M. Lämmlin, C. Schubert, A. R. Kovsh, A. Jacob, A. Umbach, and D. Bimberg, “10Gbit/s data modulation using 1.3μm InGaAs quantum dot lasers,” Electron. Lett. 41, 244–245 (2005). [CrossRef]

], and a strong resistance to optical feedback [4

4. D. O’Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, and A. R. Kovsh, “Feedback sensitivity of 1.3 μm InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003). [CrossRef]

], therefore showing great prospects towards realizing uncooled, isolator-free, directly modulated semiconductor lasers. All of these features originate from the quantum confinement that usually characterizes atoms or molecules in contrast to semiconductor materials. Indeed bulk and quantum well semiconductor materials have a large density of states at high energy and, as a result, the maximum gain suffers a blue shift with increasing carrier density.

To quantify the effect of the change of refractive index with carrier density on the dynamical properties of semiconductor lasers, Henry introduced the linewidth enhancement factor α [5

5. C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18, 259–264 (1982). [CrossRef]

],

α=4πλdndNdgdN,
(1)

where n is the refractive index, g is the gain per unit length, λ is the wavelength and N is the carrier density. The introduction of the α-factor in rate equations not only explained the experimentally observed broad linewidth and large chirp, but also the onset of coherence collapse induced by optical feedback and filamentation in broad area lasers and amplifiers.

Since its definition, researchers have developed various experimental techniques to measure the α-factor. The most commonly used techniques are based on the analysis of the amplified spontaneous emission (ASE) [6

6. T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 1527–1529 (1999). [CrossRef]

], on the FM/AM response ratio under small signal current modulation [7

7. C. Harder, K. Vahala, and A. Yariv, “Measurement of the linewidth enhancement factor a of semiconductor lasers,” Appl. Phys. Lett. 42, 328–330 (1983). [CrossRef]

], linewidth measurements [8

8. R. Jin, D. Boggavarapu, G. Khitrova, H. M. Gibbs, Y. Z. Hu, S. W. Koch, and N. Peyghambarian, “Linewidth broadening factor of a microcavity semiconductor laser,” Appl. Phys. Lett. 61, 1883–1885 (1992). [CrossRef]

, 9

9. Z. Toffano, A. Destrez, C. Birocheau, and L. Hassine, “New linewidth enhancement determination method in semiconductor lasers based on spectrum analysis above and below threshold,” Electron. Lett. 28, 9–11 (1992). [CrossRef]

, 10

10. K. Petermann, Laser Diode Modulation and Noise (Kluwer, Dordrecht, 1991).

], and pump-probe experiments [11

11. S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Linewidth enhancement factor in InGaAs quantum-dot lasers,” IEEE J. Quantum Electron. 40, 1423–1429 (2004). [CrossRef]

].

Simple analytical calculations based on rate equations for bulk and quantum well semiconductor lasers show that all of these measurements should theoretically give the same value for the α-factor. For this reason, experimentalists have used these techniques to measure the α-factor of bulk, quantum well and, more recently, of QD semiconductor lasers.

For QD lasers, simple models predict a small if not zero α-factor due to the discrete density of states. However, experiments have reported a great variety of values for the α-factor ranging from 0 [2

2. Z. Mi, P. Bhattacharya, and S. Fathpour, “High-speed 1.3μm tunnel injection quantum-dot lasers,” Appl. Phys. Lett. 86, 153109 (2005). [CrossRef]

, 6

6. T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 1527–1529 (1999). [CrossRef]

], to values of the order of those commonly observed in bulk and quantum well materials (1.5 - 3) [12

12. J. Muszalski, J. Houlihan, Huyet G., and B. Corbett, “Measurement of linewidth enhancement factor in self-assembled quantum dot semiconductor lasers emitting at 1310nm,” Electron. Lett. 40, 428–430 (2004). [CrossRef]

, 13

13. A. A. Ukhanov, A. Stintz, P. G. Eliseev, and K. J. Malloy, “Comparison of the carrier induced refractive index, gain, and linewidth enhancement factor in quantum dot and quantum well lasers,” Appl. Phys. Lett. 84, 1058–1060 (2004). [CrossRef]

]. Larger values for the a-factor than those published for quantum well devices have also been reported (4 - 11) [14

14. A. Markus, J. X. Chen, O. Gauthier-Lafaye, J.-G. Provost, C. Paranthoën, and A. Fiore, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Select. Topics Quantum Electron. 9, 1308–1314 (2003). [CrossRef]

], and a value for α as high as 60 has been published [15

15. B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005). [CrossRef]

]. It is also worth noticing that while the values for α reported from FM/AM measurements are much larger than those obtained from the analysis of the ASE, both techniques have shown an increase in α with injection [12

12. J. Muszalski, J. Houlihan, Huyet G., and B. Corbett, “Measurement of linewidth enhancement factor in self-assembled quantum dot semiconductor lasers emitting at 1310nm,” Electron. Lett. 40, 428–430 (2004). [CrossRef]

, 14

14. A. Markus, J. X. Chen, O. Gauthier-Lafaye, J.-G. Provost, C. Paranthoën, and A. Fiore, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Select. Topics Quantum Electron. 9, 1308–1314 (2003). [CrossRef]

, 15

15. B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005). [CrossRef]

]. The non-zero α-factor could be explained as a direct consequence of the plasma effect [16

16. A. V. Uskov, E. P. O’Reilly, D. McPeake, N. N. Ledentsov, D. Bimberg, and G. Huyet, “Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states,” Appl. Phys. Lett. 84, 272–274 (2004). [CrossRef]

], or dispersion of the dot sizes [17

17. J. Oksanen and J. Tulkki, “Linewidth enhancement factor and chirp in quantum dot lasers,” J. Appl. Phys. 94, 1983–1989 (2003). [CrossRef]

]. However, the large variance in the values for α suggests that the unique carrier dynamics needs to be taken into account to explain these experimental results.

The aim of this paper is to compare three techniques commonly used to measure the α-factor of QD lasers, namely, analysis of ASE, small signal FM/AM response and linewidth measurements. Our analysis is based on QD rate equations incorporating both the finite capture time of carriers into the dots and plasma effects [16

16. A. V. Uskov, E. P. O’Reilly, D. McPeake, N. N. Ledentsov, D. Bimberg, and G. Huyet, “Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states,” Appl. Phys. Lett. 84, 272–274 (2004). [CrossRef]

]. It is found that each of the three techniques gives a different value for the measured α-factor, which increases with injection current due to the plasma effect. These results are in qualitative agreement with recent experimental results and suggest that the α-factor might not be a well-defined parameter to characterise QD devices.

2. Quantum dot rate equation model

In QD semiconductor devices, the carriers are first injected into a wetting layer before being captured into a dot at a capture rate that depends strongly on the dot population. Thus, rate equations that commonly describe carrier dynamics of QD materials read [18

18. M. Sugawara, K. Mukai, and H. Shoji, “Effect of phonon bottleneck on quantum-dot laser performance,” Appl. Phys. Lett. 71, 2791–2793 (1997). [CrossRef]

, 19

19. A. V. Uskov, Y. Boucher, J. Le Bihan, and J. McInerney, “Theory of a self-assembled quantum-dot semiconductor laser with Auger carrier capture: quantum efficiency and nonlinear gain,” Appl. Phys. Lett. 71, 1499–1501 (1998). [CrossRef]

],

N˙=γnN+Jq2CN(1ρ),
(2)
ρ˙=γnN+CN(1ρ)vgσ(2ρ1)E2,
(3)

where N is the number of carriers in the wetting layer per dot and ρ is the occupation probability of a dot in the laser pumped with the current per dot J. The parameters γn and γd are the non-radiative decay rates, C is the capture rate from the wetting layer into an empty dot, vg is the group velocity and σ is the cross section of interaction of the carriers in a dot with the electric field. The constant q is the elementary charge and E is the complex amplitude of the electric field in the cavity, normalized to the photon density S: |E|2 = S.

The gain g 0 (2ρ-1) is defined by the dot population. Experimental [20

20. S. P. Hegarty, B. Corbett, J. G. McInerney, and G. Huyet, “Free-carrier effect on index change in 1.3 μm quantum-dot lasers,” Electron. Lett. 41, 416–418 (2005). [CrossRef]

], and theoretical analyses [21

21. H. C. Schneider, W. W. Chow, and S. W. Koch, “Anomalous carrier-induced dispersion in quantum-dot active media,” Phys. Rev. B 66, 041310 (2002). [CrossRef]

, 16

16. A. V. Uskov, E. P. O’Reilly, D. McPeake, N. N. Ledentsov, D. Bimberg, and G. Huyet, “Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states,” Appl. Phys. Lett. 84, 272–274 (2004). [CrossRef]

], have shown the refractive index of quantum dot materials can depend on the ground state population ρ and on the surrounding carriers N. Thus, the temporal evolution for the electric field reads

E˙=12γsE+12vgg0(2ρ1)(1+iαd)E+iαnrvgg0NE,
(4)

where γs is the photon decay rate in the cavity and g0 is the differential gain. The coefficients αd and αnr describe the change of refractive index with the change of dot carrier population and with non-resonant population respectively. In real QD materials the non-resonant carriers are described by more than one quantity, as carriers can be present in the wetting layers or in various excited states of the dots. The size dispersion of the dots and thermalisation through a wetting layer also lead to a non-zero α-factor which is here described by the parameter αd . Our analysis could also be carried out using a model describing the evolution for each dot size as in [22

22. H. C. Wong, G. B. Ren, and J. M. Rorison. ”Mode amplification in inhomogeneous QD semiconductor optical amplifiers,” Opt. Quant. Electron. (to be published).

]. However, it would include several other unknown parameters and make the derivation of analytical results much more difficult. Here, for simplicity, only a single non-resonant carrier density N and a single dot population ρ are taken into account.

Fig. 1. Values of the α-factor calculated by the following techniques: solid line is the ASE method, dashed line is the FM/AM method, dotted line is the linewidth method. (a) Laser operates for non-saturated dots (ρth = 0.6). (b) Laser operates close to full inversion (ρth = 0.9). For the non-saturated operating point (a) the α-factor does not show strong dependence on the injection current. This is not the case for operation close to full inversion (b).

3. Analysis of the amplified spontaneous emission

The first technique commonly used to measure the α-factor is based on the analysis of the ASE of a laser biased below threshold. In this regime, a change of the injection current δJ induces changes in the carrier densities δN and δr. This in turns leads to changes in the gain δg = 2g 0 δρ and laser frequency δω= vgg 0(αdδρ + αnrδN). From (1), it follows that α=2vgδωδg and

α=αd+αnrδNδρ.
(5)

This shows that the α-factor depends on the non-resonant carrier density N and that this contribution becomes more important near full inversion as shown in Fig. 1. Close to full inversion the dot occupation probability saturates to 1, but the carrier density in the wetting layer continues to increase with current, leading to a dramatic increase in α. From Eqs. (2

2. Z. Mi, P. Bhattacharya, and S. Fathpour, “High-speed 1.3μm tunnel injection quantum-dot lasers,” Appl. Phys. Lett. 86, 153109 (2005). [CrossRef]

) and (3

3. M. Kuntz, G. Fiol, M. Lämmlin, C. Schubert, A. R. Kovsh, A. Jacob, A. Umbach, and D. Bimberg, “10Gbit/s data modulation using 1.3μm InGaAs quantum dot lasers,” Electron. Lett. 41, 244–245 (2005). [CrossRef]

) it follows that δN/δρ = γd /(C(1 - ρss )2), where ρss is a steady state value, which increases with injection current up to the threshold current Jth , and then clamps at a value ρth .

In [20

20. S. P. Hegarty, B. Corbett, J. G. McInerney, and G. Huyet, “Free-carrier effect on index change in 1.3 μm quantum-dot lasers,” Electron. Lett. 41, 416–418 (2005). [CrossRef]

], it was demonstrated that the non-resonant carriers contribute approximately half the total index change. For this reason αd and αnr were chosen to be 1.2 and 130.6 respectively. In this case the first and the second terms in Eq. (5) are equal to 60% and 40% of total α = 2 when ρss = 0.6. The following values for other parameters were used in the calculations: γn = γd = 10-3 (ps)-1, vg = 0.3 (ps)-1, vg = 167 ∙ 106 m/s and C = 1ps. Values of g 0 = 90(cm)-1, σ = 7.5 ∙ 10-7(μm)2 are implied for ρth = 0.6; g 0 = 36(cm)-1, σ = 3 ∙ 10-7(μm)2 are implied for ρth = 0.75 and correspondingly g 0 = 22.5(cm)-1, σ = 1.88 ∙ 10-7(μm)2 are implied for ρth = 0.9.

This technique can indeed give a low α-factor if the device operates with a low carrier density. However, if the carrier density is increased and the dots are almost fully occupied then the a-factor increases [12

12. J. Muszalski, J. Houlihan, Huyet G., and B. Corbett, “Measurement of linewidth enhancement factor in self-assembled quantum dot semiconductor lasers emitting at 1310nm,” Electron. Lett. 40, 428–430 (2004). [CrossRef]

].

Fig. 2. (a) FM/AM response under small signal current modulation as defined by Eq. (6). The minimum of this function corresponds to αFM /AM as defined in Eq. (7). Dotted line is the value of α calculated just below threshold by the ASE method. Solid line is the FM/AM response just above threshold. Dashed line is the FM/AM response at twice threshold. Here ρth = 0.6. (b) Linewidth due to αlw . Solid line is for non-zero values of αd and αnr . Dashed line is for αnr = 0. Here the current ranges from threshold to 8 times threshold and αth = 0.75.

4. Small signal response

The second technique [7

7. C. Harder, K. Vahala, and A. Yariv, “Measurement of the linewidth enhancement factor a of semiconductor lasers,” Appl. Phys. Lett. 42, 328–330 (1983). [CrossRef]

], commonly used to measure the α-factor is based on the FM/AM response of a laser biased above threshold to small modulation of the injection current J = Jdc + δJ cos(ωt). In this case, the electric field can be written as E = √Se with S = Sdc + ΔS cos(ωt + ϕ 1) and φ= φdc + δφcos(ωt + ϕ 2). The values of δS and δφ can be calculated by solving the small signal response. The FM/AM response is defined by

F(ω)=2SdcδφδS.
(6)

A typical curve of the FM/AM response calculated for Eqs. (2

2. Z. Mi, P. Bhattacharya, and S. Fathpour, “High-speed 1.3μm tunnel injection quantum-dot lasers,” Appl. Phys. Lett. 86, 153109 (2005). [CrossRef]

), (3

3. M. Kuntz, G. Fiol, M. Lämmlin, C. Schubert, A. R. Kovsh, A. Jacob, A. Umbach, and D. Bimberg, “10Gbit/s data modulation using 1.3μm InGaAs quantum dot lasers,” Electron. Lett. 41, 244–245 (2005). [CrossRef]

), (4

4. D. O’Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, and A. R. Kovsh, “Feedback sensitivity of 1.3 μm InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003). [CrossRef]

) is depicted in Fig. 2 (a). This function first decreases, reaches a minimum at ωmin = √2Sdcγgσ and increases linearly at high frequency. This situation is very different from conventional rate equations where the FM/AM response converges toward the α-factor at high frequencies. In this technique, α is defined as F(ωmin )

αFMAMF(ωmin)=αd+αnrγdC(1ρth)2ρth1+ρthJdcJth2ρth1
(7)

It increases linearly with the injection current Jdc and, at threshold current Jth , is equal to the α-factor as measured from the ASE for the same injection current. Notice that the slope of F(ω) at high frequency is given by dF/αnrτcap and thus is directly proportional to the plasma contribution to the linewidth enhancement factor and to the effective dot carrier capture time τcap = 1/(C(1 - ρth )). When this technique is applied to QD devices to extract an a-factor, extremely large values for the α above the lasing threshold can occur, as experimentally observed in reference [15

15. B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005). [CrossRef]

].

5. Linewidth measurements

Since the α-factor was originally introduced to explain the broad linewidth of semiconductor lasers, it is worthwhile to calculate the value of this parameter based on a measurement of the laser linewidth. This can be performed by adding a white noise term to Eq. (4) and calculating the root mean square of the phase fluctuations [10

10. K. Petermann, Laser Diode Modulation and Noise (Kluwer, Dordrecht, 1991).

]. Such a calculation gives

αlw=αd+αnr2CNssγn+2C(1ρss).
(8)

6. Conclusion

In conclusion, we have shown that various experimental techniques commonly used to measure the α-factor of semiconductor lasers lead to different values when applied to QD semiconductor lasers, depending on device design. For devices operating at low carrier densities or if αnr = 0, the various measurement techniques will give similar values for the α-factor. However, for saturated dots and if αnr ≠ 0, the various measurements may give great discrepancies since the plasma effect plays an important role in this regime. Indeed, the ASE measurements, carried out at lower injection current, will give small values for the α-factor, but the other two techniques, carried out well above threshold, will give extremely large values for α. For example, Fig. 1 shows that analysis of the ASE can give α = 1.5 at J = 0.4Jth , while the FM/AM technique carried out on the same device could give α = 28 at J = 2Jth . These results are consistent with experimental results for the ASE method [12

12. J. Muszalski, J. Houlihan, Huyet G., and B. Corbett, “Measurement of linewidth enhancement factor in self-assembled quantum dot semiconductor lasers emitting at 1310nm,” Electron. Lett. 40, 428–430 (2004). [CrossRef]

] and the FM/AM technique [15

15. B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005). [CrossRef]

].

This analysis also suggests that one should deal carefully with the α-factor of QD materials and devices. For some applications, such as direct modulation, it is clear that the FM/AM technique may give the best indication about device performance but for others, such as filamentation in broad area devices or feedback sensitivity, the ASE technique may also be a good indicator of the device behaviour. Since such behaviour is directly linked to the finite capture time and the plasma effect, which are characteristic of QD materials, it might be useful to compute these parameters from experimental measurements.

Acknowledgments

This work was supported by Science Foundation Ireland under contract number SFI/01/F1/CO13, the EU IST projejct “DOTCOM”, and the Irish HEA under the PRTLI program.

References and links

1.

D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (John Wiley & Sons, Chich-ester, 1999).

2.

Z. Mi, P. Bhattacharya, and S. Fathpour, “High-speed 1.3μm tunnel injection quantum-dot lasers,” Appl. Phys. Lett. 86, 153109 (2005). [CrossRef]

3.

M. Kuntz, G. Fiol, M. Lämmlin, C. Schubert, A. R. Kovsh, A. Jacob, A. Umbach, and D. Bimberg, “10Gbit/s data modulation using 1.3μm InGaAs quantum dot lasers,” Electron. Lett. 41, 244–245 (2005). [CrossRef]

4.

D. O’Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, and A. R. Kovsh, “Feedback sensitivity of 1.3 μm InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003). [CrossRef]

5.

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18, 259–264 (1982). [CrossRef]

6.

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 1527–1529 (1999). [CrossRef]

7.

C. Harder, K. Vahala, and A. Yariv, “Measurement of the linewidth enhancement factor a of semiconductor lasers,” Appl. Phys. Lett. 42, 328–330 (1983). [CrossRef]

8.

R. Jin, D. Boggavarapu, G. Khitrova, H. M. Gibbs, Y. Z. Hu, S. W. Koch, and N. Peyghambarian, “Linewidth broadening factor of a microcavity semiconductor laser,” Appl. Phys. Lett. 61, 1883–1885 (1992). [CrossRef]

9.

Z. Toffano, A. Destrez, C. Birocheau, and L. Hassine, “New linewidth enhancement determination method in semiconductor lasers based on spectrum analysis above and below threshold,” Electron. Lett. 28, 9–11 (1992). [CrossRef]

10.

K. Petermann, Laser Diode Modulation and Noise (Kluwer, Dordrecht, 1991).

11.

S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Linewidth enhancement factor in InGaAs quantum-dot lasers,” IEEE J. Quantum Electron. 40, 1423–1429 (2004). [CrossRef]

12.

J. Muszalski, J. Houlihan, Huyet G., and B. Corbett, “Measurement of linewidth enhancement factor in self-assembled quantum dot semiconductor lasers emitting at 1310nm,” Electron. Lett. 40, 428–430 (2004). [CrossRef]

13.

A. A. Ukhanov, A. Stintz, P. G. Eliseev, and K. J. Malloy, “Comparison of the carrier induced refractive index, gain, and linewidth enhancement factor in quantum dot and quantum well lasers,” Appl. Phys. Lett. 84, 1058–1060 (2004). [CrossRef]

14.

A. Markus, J. X. Chen, O. Gauthier-Lafaye, J.-G. Provost, C. Paranthoën, and A. Fiore, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Select. Topics Quantum Electron. 9, 1308–1314 (2003). [CrossRef]

15.

B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005). [CrossRef]

16.

A. V. Uskov, E. P. O’Reilly, D. McPeake, N. N. Ledentsov, D. Bimberg, and G. Huyet, “Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states,” Appl. Phys. Lett. 84, 272–274 (2004). [CrossRef]

17.

J. Oksanen and J. Tulkki, “Linewidth enhancement factor and chirp in quantum dot lasers,” J. Appl. Phys. 94, 1983–1989 (2003). [CrossRef]

18.

M. Sugawara, K. Mukai, and H. Shoji, “Effect of phonon bottleneck on quantum-dot laser performance,” Appl. Phys. Lett. 71, 2791–2793 (1997). [CrossRef]

19.

A. V. Uskov, Y. Boucher, J. Le Bihan, and J. McInerney, “Theory of a self-assembled quantum-dot semiconductor laser with Auger carrier capture: quantum efficiency and nonlinear gain,” Appl. Phys. Lett. 71, 1499–1501 (1998). [CrossRef]

20.

S. P. Hegarty, B. Corbett, J. G. McInerney, and G. Huyet, “Free-carrier effect on index change in 1.3 μm quantum-dot lasers,” Electron. Lett. 41, 416–418 (2005). [CrossRef]

21.

H. C. Schneider, W. W. Chow, and S. W. Koch, “Anomalous carrier-induced dispersion in quantum-dot active media,” Phys. Rev. B 66, 041310 (2002). [CrossRef]

22.

H. C. Wong, G. B. Ren, and J. M. Rorison. ”Mode amplification in inhomogeneous QD semiconductor optical amplifiers,” Opt. Quant. Electron. (to be published).

23.

H. Su, L. Zhang, R. Wang, T. C. Newell, A. L. Gray, and L. F. Lester, “Linewidth study of InAs-InGaAs quantum dot distributed feedback lasers,” IEEE Photon. Technol. Lett. 16, 2206–2208 (2004). [CrossRef]

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.5960) Lasers and laser optics : Semiconductor lasers
(250.0250) Optoelectronics : Optoelectronics

ToC Category:
Optoelectronics

History
Original Manuscript: February 6, 2006
Revised Manuscript: March 20, 2006
Manuscript Accepted: March 20, 2006
Published: April 3, 2006

Citation
Sergey Melnik, Guillaume Huyet, and Alexander Uskov, "The linewidth enhancement factor α of quantum dot semiconductor lasers," Opt. Express 14, 2950-2955 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-7-2950


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (John Wiley & Sons, Chichester, 1999).
  2. Z. Mi, P. Bhattacharya, and S. Fathpour, "High-speed 1.3 μm tunnel injection quantum-dot lasers," Appl. Phys. Lett. 86, 153109 (2005). [CrossRef]
  3. M. Kuntz, G. Fiol, M. Lämmlin, C. Schubert, A. R. Kovsh, A. Jacob, A. Umbach, and D. Bimberg, "10Gbit/s data modulation using 1.3 μm InGaAs quantum dot lasers," Electron. Lett. 41, 244-245 (2005). [CrossRef]
  4. D. O’Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, A. R. Kovsh, "Feedback sensitivity of 1.3 μm InAs/GaAs quantum dot lasers," Electron. Lett. 39, 1819-1820 (2003). [CrossRef]
  5. C. H. Henry, "Theory of the linewidth of semiconductor lasers," IEEE J. Quantum Electron. 18, 259-264 (1982). [CrossRef]
  6. T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, "Gain and linewidth enhancement factor in InAs quantum-dot laser diodes," IEEE Photon. Technol. Lett. 11, 1527-1529 (1999). [CrossRef]
  7. C. Harder, K. Vahala, and A. Yariv, "Measurement of the linewidth enhancement factor α of semiconductor lasers," Appl. Phys. Lett. 42, 328-330 (1983). [CrossRef]
  8. R. Jin, D. Boggavarapu, G. Khitrova, H. M. Gibbs, Y. Z. Hu, S. W. Koch, and N. Peyghambarian, "Linewidth broadening factor of a microcavity semiconductor laser," Appl. Phys. Lett. 61, 1883-1885 (1992). [CrossRef]
  9. Z. Toffano, A. Destrez, C. Birocheau, and L. Hassine, "New linewidth enhancement determination method in semiconductor lasers based on spectrum analysis above and below threshold," Electron. Lett. 28, 9-11 (1992). [CrossRef]
  10. K. Petermann, Laser Diode Modulation and Noise (Kluwer, Dordrecht, 1991).
  11. S. Schneider, P. Borri,W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, "Linewidth enhancement factor in InGaAs quantum-dot lasers," IEEE J. Quantum Electron. 40, 1423-1429 (2004). [CrossRef]
  12. J. Muszalski, J. Houlihan, G. Huyet, and B. Corbett, "Measurement of linewidth enhancement factor in self assembled quantum dot semiconductor lasers emitting at 1310nm," Electron. Lett. 40, 428-430 (2004). [CrossRef]
  13. A. A. Ukhanov, A. Stintz, P. G. Eliseev, and K. J. Malloy, "Comparison of the carrier induced refractive index, gain, and linewidth enhancement factor in quantum dot and quantum well lasers," Appl. Phys. Lett. 84, 1058-1060 (2004). [CrossRef]
  14. A. Markus, J. X. Chen, O. Gauthier-Lafaye, J.-G. Provost, C. Paranthoën and A. Fiore, "Impact of intraband relaxation on the performance of a quantum-dot laser," IEEE J. Sel. Top. Quantum Electron. 9, 1308-1314 (2003). Q1 [CrossRef]
  15. B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore and B. Thedrez, "Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser," Electron. Lett. 41, 323-324 (2005). [CrossRef]
  16. A. V. Uskov, E. P. O’Reilly, D. McPeake, N. N. Ledentsov, D. Bimberg, G. Huyet, "Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states," Appl. Phys. Lett. 84, 272-274 (2004). [CrossRef]
  17. J. Oksanen and J. Tulkki, "Linewidth enhancement factor and chirp in quantum dot lasers," J. Appl. Phys. 94, 1983-1989 (2003). [CrossRef]
  18. M. Sugawara, K. Mukai, and H. Shoji, "Effect of phonon bottleneck on quantum-dot laser performance," Appl. Phys. Lett. 71, 2791-2793 (1997). [CrossRef]
  19. A. V. Uskov, Y. Boucher, J. Le Bihan, and J. McInerney, "Theory of a self-assembled quantum-dot semiconductor laser with Auger carrier capture: quantumefficiency and nonlinear gain," Appl. Phys. Lett. 71, 1499-1501 (1998). [CrossRef]
  20. S. P. Hegarty, B. Corbett, J. G. McInerney and G. Huyet, "Free-carrier effect on index change in 1.3 μm quantumdot lasers," Electron. Lett. 41, 416-418 (2005). [CrossRef]
  21. H. C. Schneider, W. W. Chow and S. W. Koch, "Anomalous carrier-induced dispersion in quantum-dot active media," Phys. Rev. B 66, 041310 (2002). [CrossRef]
  22. H. C. Wong, G. B. Ren, J. M. Rorison. "Mode amplification in inhomogeneous QD semiconductor optical amplifiers," Opt. Quantum Electron. (to be published).
  23. H. Su, L. Zhang, R. Wang, T. C. Newell, A. L. Gray and L. F. Lester, "Linewidth study of InAs-InGaAs quantum dot distributed feedback lasers," IEEE Photon. Technol. Lett. 16, 2206-2208 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited