## High purity bright single photon source

Optics Express, Vol. 15, Issue 13, pp. 7940-7949 (2007)

http://dx.doi.org/10.1364/OE.15.007940

Acrobat PDF (1365 KB)

### Abstract

Using cavity-enhanced non-degenerate parametric down-conversion, we have built a frequency tunable source of heralded single photons with a narrow bandwidth of 8 MHz, making it compatible with atomic quantum memories. The photon state is 70% pure single photon as characterized by a tomographic measurement and reconstruction of the quantum state, revealing a clearly negative Wigner function. Furthermore, it has a spectral brightness of ~1,500 photons/s per MHz bandwidth, making it one of the brightest single photon sources available. We also investigate the correlation function of the down-converted fields using a combination of two very distinct detection methods; photon counting and homodyne measurement.

© 2007 Optical Society of America

## 1. Introduction

1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. **74**, 145–195 (2002). [CrossRef]

2. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature **409**, 46–52 (2001). [CrossRef] [PubMed]

3. B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurášek, and E. S. Polzik, “Experimental demonstration of quantum memory for light,” Nature **432**, 482–486 (2004). [CrossRef] [PubMed]

4. J. F. Sherson, H. Krauter, R. K. Olsson, B. Julsgaard, K. Hammerer, I. Cirac, and E. S. Polzik, “Quantum tele-portation between light and matter,” Nature **443**, 557–560 (2006). [CrossRef] [PubMed]

5. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science **290**, 2282–2285 (2000). [CrossRef] [PubMed]

6. Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science **295**, 102–105 (2002). [CrossRef]

7. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. **85**, 290–293 (2000). [CrossRef] [PubMed]

8. R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, “Photon antibunching in the fluorescence of individual color centers in diamond,” Opt. Lett **25**, 1294–1296 (2000). [CrossRef]

9. B. Lounis and W. E. Moerner, “Single photons on demand from a single molecule at room temperature,” Nature **407**, 491–493 (2000). [CrossRef] [PubMed]

10. B. Darquie, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science **309**, 454–456 (2005). [CrossRef] [PubMed]

11. M. Pelton, C. Santori, J. Vuc̆ković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. **89**, 233602 (2002). [CrossRef] [PubMed]

12. J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science **303**, 1992–1994 (2004). [CrossRef] [PubMed]

13. M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature **431**, 1075–1078 (2004). [CrossRef] [PubMed]

14. T. Wilk, S. C. Webster, H. P. Specht, G. Rempe, and A. Kuhn, “Polarization-controlled single photons,” Phys. Rev. Lett. **98**, 063601 (2007). [CrossRef] [PubMed]

15. D. N. Matsukevich, T. Chaneliere, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Deterministic single photons via conditional quantum evolution,” Phys. Rev. Lett. **97**, 013601 (2006). [CrossRef] [PubMed]

16. J. K. Thompson, J. Simon, H. Loh, and V. Vuletic, “A high-brightness source of narrowband, identical-photon pairs,” Science **313**, 74–77 (2006). [CrossRef] [PubMed]

17. S. Chen, Y.-A. Chen, T. Strassel, Z.-S. Yuan, B. Zhao, J. Schmiedmayer, and J.-W. Pan, “Deterministic and storable single-photon source based on a quantum memory,” Phys. Rev. Lett. **97**, 173004 (2006). [CrossRef] [PubMed]

16. J. K. Thompson, J. Simon, H. Loh, and V. Vuletic, “A high-brightness source of narrowband, identical-photon pairs,” Science **313**, 74–77 (2006). [CrossRef] [PubMed]

18. C. K. Hong and L. Mandel, “Experimental realization of a localized one-photon state,” Phys. Rev. Lett. **56**, 58–60 (1986). [CrossRef] [PubMed]

19. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. **75**, 4337–4341 (1995). [CrossRef] [PubMed]

20. A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum state reconstruction of the single-photon fock state,” Phys. Rev. Lett. **87**, 050402 (2001). [CrossRef] [PubMed]

21. T. Pittman, B. Jacobs, and J. Franson, “Heralding single photons from pulsed parametric down-conversion,” Opt. Commun. **246**, 545–550 (2005). [CrossRef]

22. A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett. **93**, 093601 (2004). [CrossRef] [PubMed]

23. J. Fulconis, O. Alibart, W. Wadsworth, P. Russell, and J. Rarity, “High brightness single mode source of correlated photon pairs using a photonic crystal fiber,” Opt. Express **13**, 7572–7582 (2005). [CrossRef] [PubMed]

24. Y. J. Lu and Z. Y. Ou, “Optical parametric oscillator far below threshold: Experiment versus theory,” Phys. Rev. A **62**, 033804 (2000). [CrossRef]

24. Y. J. Lu and Z. Y. Ou, “Optical parametric oscillator far below threshold: Experiment versus theory,” Phys. Rev. A **62**, 033804 (2000). [CrossRef]

25. H. Wang, T. Horikiri, and T. Kobayashi, “Polarization-entangled mode-locked photons from cavity-enhanced spontaneous parametric down-conversion,” Phys. Rev. A **70**, 043804 (2004). [CrossRef]

26. C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Time-bin-modulated biphotons from cavity-enhanced down-conversion,” Phys. Rev. Lett. **97**, 223601 (2006). [CrossRef] [PubMed]

20. A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum state reconstruction of the single-photon fock state,” Phys. Rev. Lett. **87**, 050402 (2001). [CrossRef] [PubMed]

27. A. Zavatta, S. Viciani, and M. Bellini, “Tomographic reconstruction of the single-photon fock state by high-frequency homodyne detection,” Phys. Rev. A **70**, 053821 (2004). [CrossRef]

28. A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier, “Quantum homodyne tomography of a two-photon fock state,” Phys. Rev. Lett. **96**, 213601 (2006). [CrossRef] [PubMed]

## 2. Experiment

*T*= 12.5%, and the total internal losses are

*L*= 0.4%, giving a cavity HWHM bandwidth of

*γ*

_{1/2}= 2

*π*4.0 MHz and an escape efficiency

*η*

_{esc}=

*T*/(

*T*+

*L*) = 0.97. With an effective nonlinearity

*E*

_{nL}≈ 0.020 W , the threshold pump power for oscillation is around

*P*

_{thr}= (

*T*+

*L*)

^{2}/4

*E*

_{NL}=210 mW. The blue pump (430 nm) is generated by frequency doubling the main Ti:Sapph laser in a second harmonic generator (SHG) of similar geometry as the OPO, but with a KNbO

_{3}crystal as the nonlinear medium. For single photon generation the pump should be rather weak to inhibit the population of higher photon numbers. The pumping strength is quantized as the pump parameter ε = √

*P*/

_{b}*P*, where

_{thr}*P*, is the blue pump power. This pump parameter is most easily inferred by observing the parametric gain,

_{b}*G*= 1/(1- ε)

^{2}of a beam of half the pump frequency seeded into the OPO.

*ω*

_{-}and

*ω*

_{+}modes thus separated and with the APD click heralding an

*ω*

_{+}photon, the existence of this photon must be confirmed. Instead of just measuring the arrival of the photons on another APD, we do a homodyne measurement of the field by mixing it on a 50/50 beam splitter with a strong local oscillator (LO) and subsequently recording the difference of the photocurrents measured in the two arms. The LO has been shifted by 370 MHz to the center frequency of the

*ω*

_{+}mode by sending part of the main laser beam through an AOM (acousto optic modulator). The detector employs two Hamamatsu photo diodes (special production of the S5971 type) with a specified quantum efficiency of 98%. It has a bandwidth of more than 100 MHz, and with 1.5 mW light on each diode the shot noise is 10 dB above the electronic noise floor. The output of the detector goes to a fast digital oscilloscope which samples the signal at 500 MS/s for a period of 2

*μ*s around each APD trigger event. By repeating the state generation and measurement several thousand times, statistics about the quadrature distribution of the output state is build up. We scan the phase of the local oscillator to observe all quadrature phases, but as expected the distribution is completely phase invariant.

*f*(

_{s}*t*), to the noise traces and afterwards integrate the traces over time. This leaves us with a single mode quadrature value corresponding to the operator

*η*is the total generation and detection efficiency of the signal, and the vacuum mode is added to maintain the commutator relations. For the very low gain regime (

_{s}*ε*≥ 1), the optimal field mode function for high single photon fidelity is simply the double-sided exponential [24

24. Y. J. Lu and Z. Y. Ou, “Optical parametric oscillator far below threshold: Experiment versus theory,” Phys. Rev. A **62**, 033804 (2000). [CrossRef]

32. A. E. B. Nielsen and K. Mølmer, “Single-photon-state generation from a continuous-wave nondegenerate optical parametric oscillator,” Phys. Rev. A **75**, 023806 (2007). [CrossRef]

32. A. E. B. Nielsen and K. Mølmer, “Single-photon-state generation from a continuous-wave nondegenerate optical parametric oscillator,” Phys. Rev. A **75**, 023806 (2007). [CrossRef]

33. Z. Y. Ou and H. J. Kimble, “Probability distribution of photoelectric currents in photodetection processes and its connection to the measurement of a quantum state,” Phys. Rev. A **52**, 3126 (1995). [CrossRef] [PubMed]

## 4. Correlation function measurement

^{(2)}(τ) correlation function is calculated from the continuous frequency sideband measurements of the field quadratures. The scheme presented here, which in the essence is similar to the work by Foster et al. [36

36. G. T. Foster, W. P. Smith, J. E. Reiner, and L. A. Orozco, “Time-dependent electric field fluctuations at the subphoton level,” Phys. Rev. A **66**, 033807 (2002). [CrossRef]

*t*is

_{c}*q̂*is defined as

*q̂*= (

*âe*

^{-iθ}+ â

^{†}

*e*

^{iθ}/√2, where the phase is made implicit due to the phase-invariance of the state. In order to calculate explicitly the expected variance, the signal and trigger modes,

*â*and

_{s}*â*, must include the detection efficiencies and any transformations – optical or electronic – applied to them, as done by the mode function in (2). For example, the filtering of the trigger field by the filter cavities must be taken into account. For uncorre-lated modes (for instance far away from

_{t}*t*), the variance reduces to the thermal state variance 〈Δ

_{c}*q̂*(

_{s}*τ*)

^{2}〉∣

_{uncond}= 〈Δ

*q̂*(

_{s}*τ*)

^{2}〉∣

_{thermal}= 1/2 + 〈

*â*

^{†}

_{s}

*â*〉. The

_{s}*g*

_{ts}^{(2)}(τ) cross-correlation function is now easily seen to be a simple expression of the quadrature variances

*g*

_{ts}^{(2)}function has been calculated from the variances in Fig. 4(a), where the thermal state variances have been calculated as the mean values of the traces far away from the trigger time. The expression (5) does no longer depend on the signal efficiency, which means that high frequency vacuum contributions play no role in the shape and size of the correlation function. In the figure are also plotted three expected

*g*

_{ts}^{(2)}functions, calculated from a pump parameter

*ε*= 0.09 and a statistical single photon content of 1, 0.8, and 0.6, respectively, where the remaining parts are made up of the thermal state. The optical filtering of the trigger mode (24 MHz, according to the bandwidth of the narrowest filter cavity) and the digital 30 MHz signal mode filtering have been included in these plots. In principle, since the correlation functions are independent on the signal detection efficiency but depend on the amount of thermal state admixture, it should be possible to find this amount by fitting these theoretical curves to the measurements. However, the uncertainty in the value of the thermal state variance (which is very close to 1/2) turns into a huge uncertainty in the derived

*g*

_{ts}^{(2)}function – the error bars are so large that they are not displayed in the figure – so that this estimation is meaningless. More precise values would have been attainable if we had made a large number of measurements of the unconditioned thermal state.

## 5. Conclusion

## References and links

1. | N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. |

2. | E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature |

3. | B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurášek, and E. S. Polzik, “Experimental demonstration of quantum memory for light,” Nature |

4. | J. F. Sherson, H. Krauter, R. K. Olsson, B. Julsgaard, K. Hammerer, I. Cirac, and E. S. Polzik, “Quantum tele-portation between light and matter,” Nature |

5. | P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science |

6. | Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science |

7. | C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. |

8. | R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, “Photon antibunching in the fluorescence of individual color centers in diamond,” Opt. Lett |

9. | B. Lounis and W. E. Moerner, “Single photons on demand from a single molecule at room temperature,” Nature |

10. | B. Darquie, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science |

11. | M. Pelton, C. Santori, J. Vuc̆ković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. |

12. | J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science |

13. | M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature |

14. | T. Wilk, S. C. Webster, H. P. Specht, G. Rempe, and A. Kuhn, “Polarization-controlled single photons,” Phys. Rev. Lett. |

15. | D. N. Matsukevich, T. Chaneliere, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Deterministic single photons via conditional quantum evolution,” Phys. Rev. Lett. |

16. | J. K. Thompson, J. Simon, H. Loh, and V. Vuletic, “A high-brightness source of narrowband, identical-photon pairs,” Science |

17. | S. Chen, Y.-A. Chen, T. Strassel, Z.-S. Yuan, B. Zhao, J. Schmiedmayer, and J.-W. Pan, “Deterministic and storable single-photon source based on a quantum memory,” Phys. Rev. Lett. |

18. | C. K. Hong and L. Mandel, “Experimental realization of a localized one-photon state,” Phys. Rev. Lett. |

19. | P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. |

20. | A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum state reconstruction of the single-photon fock state,” Phys. Rev. Lett. |

21. | T. Pittman, B. Jacobs, and J. Franson, “Heralding single photons from pulsed parametric down-conversion,” Opt. Commun. |

22. | A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett. |

23. | J. Fulconis, O. Alibart, W. Wadsworth, P. Russell, and J. Rarity, “High brightness single mode source of correlated photon pairs using a photonic crystal fiber,” Opt. Express |

24. | Y. J. Lu and Z. Y. Ou, “Optical parametric oscillator far below threshold: Experiment versus theory,” Phys. Rev. A |

25. | H. Wang, T. Horikiri, and T. Kobayashi, “Polarization-entangled mode-locked photons from cavity-enhanced spontaneous parametric down-conversion,” Phys. Rev. A |

26. | C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Time-bin-modulated biphotons from cavity-enhanced down-conversion,” Phys. Rev. Lett. |

27. | A. Zavatta, S. Viciani, and M. Bellini, “Tomographic reconstruction of the single-photon fock state by high-frequency homodyne detection,” Phys. Rev. A |

28. | A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier, “Quantum homodyne tomography of a two-photon fock state,” Phys. Rev. Lett. |

29. | P. D. Drummond and M. D. Reid, “Correlations in nondegenerate parametric oscillation. II. Below threshold results,” Phys. Rev. A |

30. | C. Schori, J. L. Sørensen, and E. S. Polzik, “Narrow-band frequency tunable light source of continuous quadrature entanglement,” Phys. Rev. A |

31. | J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett. |

32. | A. E. B. Nielsen and K. Mølmer, “Single-photon-state generation from a continuous-wave nondegenerate optical parametric oscillator,” Phys. Rev. A |

33. | Z. Y. Ou and H. J. Kimble, “Probability distribution of photoelectric currents in photodetection processes and its connection to the measurement of a quantum state,” Phys. Rev. A |

34. | A. I. Lvovsky, “Iterative maximum-likelihood reconstruction in quantum homodyne tomography,” J. Opt. B: Quantum and Semiclassical Optics |

35. | N. B. Grosse, T. Symul, M. Stobinńka, T. C. Ralph, and P. K. Lam, “Measuring photon anti-bunching from continuous variable sideband squeezing,” quant-ph/0609033. |

36. | G. T. Foster, W. P. Smith, J. E. Reiner, and L. A. Orozco, “Time-dependent electric field fluctuations at the subphoton level,” Phys. Rev. A |

**OCIS Codes**

(120.2920) Instrumentation, measurement, and metrology : Homodyning

(230.6080) Optical devices : Sources

(270.5290) Quantum optics : Photon statistics

**ToC Category:**

Quantum Optics

**History**

Original Manuscript: April 3, 2007

Revised Manuscript: June 5, 2007

Manuscript Accepted: June 6, 2007

Published: June 11, 2007

**Citation**

J. S. Neergaard-Nielsen, B. M. Nielsen, H. Takahashi, A. I. Vistnes, and E. S. Polzik, "High purity bright single photon source," Opt. Express **15**, 7940-7949 (2007)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-13-7940

Sort: Year | Journal | Reset

### References

- N. Gisin, G. Ribordy,W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002). [CrossRef]
- E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46-52 (2001). [CrossRef] [PubMed]
- B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurasek, and E. S. Polzik, "Experimental demonstration of quantum memory for light," Nature 432, 482-486 (2004). [CrossRef] [PubMed]
- J. F. Sherson, H. Krauter, R. K. Olsson, B. Julsgaard, K. Hammerer, I. Cirac, and E. S. Polzik, "Quantum teleportation between light and matter," Nature 443, 557-560 (2006). [CrossRef] [PubMed]
- P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A quantum dot single-photon turnstile device," Science 290, 2282-2285 (2000). [CrossRef] [PubMed]
- Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, "Electrically driven single-photon source," Science 295, 102-105 (2002). [CrossRef]
- C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, "Stable solid-state source of single photons," Phys. Rev. Lett. 85, 290-293 (2000). [CrossRef] [PubMed]
- R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, "Photon antibunching in the fluorescence of individual color centers in diamond," Opt. Lett 25, 1294-1296 (2000). [CrossRef]
- B. Lounis and W. E. Moerner, "Single photons on demand from a single molecule at room temperature," Nature 407, 491-493 (2000). [CrossRef] [PubMed]
- B. Darquie, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, "Controlled single-photon emission from a single trapped two-level atom," Science 309, 454-456 (2005). [CrossRef] [PubMed]
- M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient source of single photons: A single quantum dot in a micropost microcavity," Phys. Rev. Lett. 89, 233602 (2002). [CrossRef] [PubMed]
- J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, "Deterministic generation of single photons from one atom trapped in a cavity," Science 303, 1992-1994 (2004). [CrossRef] [PubMed]
- M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, "Continuous generation of single photons with controlled waveform in an ion-trap cavity system," Nature 431, 1075-1078 (2004). [CrossRef] [PubMed]
- T. Wilk, S. C. Webster, H. P. Specht, G. Rempe, and A. Kuhn, "Polarization-controlled single photons," Phys. Rev. Lett. 98, 063601 (2007). [CrossRef] [PubMed]
- D. N. Matsukevich, T. Chaneliere, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, "Deterministic single photons via conditional quantum evolution," Phys. Rev. Lett. 97, 013601 (2006). [CrossRef] [PubMed]
- J. K. Thompson, J. Simon, H. Loh, and V. Vuletic, "A high-brightness source of narrowband, identical-photon pairs," Science 313, 74-77 (2006). [CrossRef] [PubMed]
- S. Chen, Y.-A. Chen, T. Strassel, Z.-S. Yuan, B. Zhao, J. Schmiedmayer, and J.-W. Pan, "Deterministic and storable single-photon source based on a quantum memory," Phys. Rev. Lett. 97, 173004 (2006). [CrossRef] [PubMed]
- C. K. Hong and L. Mandel, "Experimental realization of a localized one-photon state," Phys. Rev. Lett. 56, 58-60 (1986). [CrossRef] [PubMed]
- P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995). [CrossRef] [PubMed]
- A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, "Quantum state reconstruction of the single-photon fock state," Phys. Rev. Lett. 87, 050402 (2001). [CrossRef] [PubMed]
- T. Pittman, B. Jacobs, and J. Franson, "Heralding single photons from pulsed parametric down-conversion," Opt. Commun. 246, 545-550 (2005). [CrossRef]
- A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A. Walmsley, "Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks," Phys. Rev. Lett. 93, 093601 (2004). [CrossRef] [PubMed]
- J. Fulconis, O. Alibart,W. Wadsworth, P. Russell, and J. Rarity, "High brightness single mode source of correlated photon pairs using a photonic crystal fiber," Opt. Express 13, 7572-7582 (2005). [CrossRef] [PubMed]
- Y. J. Lu and Z. Y. Ou, "Optical parametric oscillator far below threshold: Experiment versus theory," Phys. Rev. A 62, 033804 (2000). [CrossRef]
- H. Wang, T. Horikiri, and T. Kobayashi, "Polarization-entangled mode-locked photons from cavity-enhanced spontaneous parametric down-conversion," Phys. Rev. A 70, 043804 (2004). [CrossRef]
- C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, "Time-bin-modulated biphotons from cavity-enhanced downconversion," Phys. Rev. Lett. 97, 223601 (2006). [CrossRef] [PubMed]
- A. Zavatta, S. Viciani, and M. Bellini, "Tomographic reconstruction of the single-photon fock state by highfrequency homodyne detection," Phys. Rev. A 70, 053821 (2004). [CrossRef]
- A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier, "Quantum homodyne tomography of a two-photon fock state," Phys. Rev. Lett. 96, 213601 (2006). [CrossRef] [PubMed]
- P. D. Drummond and M. D. Reid, "Correlations in nondegenerate parametric oscillation. II. Below threshold results," Phys. Rev. A 41, 3930-3949 (1990). [CrossRef] [PubMed]
- C. Schori, J. L. Sørensen, and E. S. Polzik, "Narrow-band frequency tunable light source of continuous quadrature entanglement," Phys. Rev. A 66, 033802 (2002). [CrossRef]
- J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, "Generation of a superposition of odd photon number states for quantum information networks," Phys. Rev. Lett. 97, 083604 (2006). [CrossRef] [PubMed]
- A. E. B. Nielsen and K. Mølmer, "Single-photon-state generation from a continuous-wave nondegenerate optical parametric oscillator," Phys. Rev. A 75, 023806 (2007). [CrossRef]
- Z. Y. Ou and H. J. Kimble, "Probability distribution of photoelectric currents in photodetection processes and its connection to the measurement of a quantum state," Phys. Rev. A 52, 3126 (1995). [CrossRef] [PubMed]
- A. I. Lvovsky, "Iterative maximum-likelihood reconstruction in quantum homodyne tomography," J. Opt. B: Quantum and Semiclassical Optics 6, S556-S559 (2004). [CrossRef]
- N. B. Grosse, T. Symul, M. Stobi’nska, T. C. Ralph, and P. K. Lam, "Measuring photon anti-bunching from continuous variable sideband squeezing," quant-ph/0609033.
- G. T. Foster, W. P. Smith, J. E. Reiner, and L. A. Orozco, "Time-dependent electric field fluctuations at the subphoton level," Phys. Rev. A 66, 033807 (2002). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.