OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 14 — Jul. 9, 2007
  • pp: 9096–9106
« Show journal navigation

Analysis on dynamic characteristics of semiconductor optical amplifiers with certain facet reflection based on detailed wideband model

Enbo Zhou, Xinliang Zhang, and Dexiu Huang  »View Author Affiliations


Optics Express, Vol. 15, Issue 14, pp. 9096-9106 (2007)
http://dx.doi.org/10.1364/OE.15.009096


View Full Text Article

Acrobat PDF (294 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Dynamic characteristics of semiconductor optical amplifiers (SOAs) with certain facet reflection in different operation conditions are theoretically investigated with a detailed wideband model. Influences of different facets reflectivities are numerically simulated for different lengths of active regions. The results indicate that the gain recovery time can be reduced to 50% of the initial value while the other related characteristics are optimized for appropriate facets reflections. A half reflective semiconductor optical amplifier (HR-SOA) with a cleaved facet on rear facet and an antireflection coating on front facet can speed up the gain recovery with easy realization and low cost. The related characteristics of this structure are evaluated. It’s also indicated that the gain recovery has further potential to be reduced as low as twenties picoseconds for a long active region.

© 2007 Optical Society of America

1. Introduction

The paragraphs will be presented as follows. The detailed multisection model containing the interaction of photons and electrons in direct bandgap bulk-material is described in section 2. The effect of residual facet reflectivity will be discussed in the following section 3. Further more, the pulse induced variation of phase and gain change, and ER of switched channel are numerically simulated and analyzed respectively. The conclusion is presented in section 4.

2. Wideband model

2.1 Optical parameters

To investigate the effect of the residual facet reflectivity on the dynamic characteristics of the SOA quantitatively, a detailed wideband model should account for the wavelength dependent ASE that can be greatly stimulated at a considerable value of facet reflectivity. To describe the wavelength dependent spontaneous emission and gain preciously, the material gain coefficient (m -1) of the active region in a InGaAsP direct bandgap bulk-material is given by [17

17. M. J. Connelly, “Wideband semiconductor optical amplifier steady-state numerical model,” IEEE J. Quantum Electron. 37, 439–447 (2001). [CrossRef]

, 20

20. A. Yariv, Optical electronics in modern communications (5th ed. Oxford University Press, New York, 1997).

]

gm(ω0)=c22n12ω2τ(2memhhħ(me+mhh))32(ωEgħ)12
×(fc(ω)fv(ω))T2π[1+(ωω0)2T22]
=c22n12ω02τ(2memhhħ(me+mhh))32
×(ω0Egħ)12(fc(ω0)fv(ω0))
(1)

where

c velocity of propagation of light in vacuum;
n 1 active region refractive index;
ω 0 stimulated recombination central angular frequency;
τ radiative carrier recombination lifetime;
ħ normalized Planck’s constant;
me effective mass of an electron in conduction band;
mhh effective mass of an heavy hold in valence band;
T 2 mean lifetime for coherent interaction of electrons with a monochromatic field in semiconductors and is the order of 1 ps.

fc(ω 0) and fv(ω 0) are the Fermi-Dirac distributions which determine the occupation probabilities for the electrons in the conduction band and the valence band respectively. Eg is the bandgap energy.

In high speed communication system, an ultrashort pulse with the duration of few picoseconds may induce a gain compression which can be simply described by a compression factor, presented as [21

21. A. M. a. J. Mørk, “Saturation induced by picosecond pulses in semiconductor optical amplifiers” J. Opt. Soc. Am. B. 14, 761 (1997). [CrossRef]

]

gc(ω0)=gm(ω0)1+εS
(2)

where ε is the nonlinear gain suppression parameter with contribution from spectral-hole burning (SHB) and carrier heating (CH). S is the total photon density. However, the nonlinear gain suppression parameter in [10

10. A. Matsumoto, K. Nishimura, K. Utaka, and M. Usami, “Operational design on high-speed semiconductor optical amplifier with assist light for application to wavelength converters using cross-phase modulation,” IEEE J. Quantum Electron. 42, 313–323 (2006). [CrossRef]

] is presented as a wavelength dependent function; the Eq. (2) is still accurate for the incident lights located near the gain peak

In quite a similar manner, the spontaneous emission rate per unit volume per unit frequency centered in angular frequency ωj is expressed in m -3 s -1 Hz -1 as

rsp(ωj)=1πτ(2memhhħ(me+mhh))32(ωjEgħ)12fc(ωj)(1fv(ωj))
(3)

The internal waveguide loss as a linear function of carrier density is expressed as [17

17. M. J. Connelly, “Wideband semiconductor optical amplifier steady-state numerical model,” IEEE J. Quantum Electron. 37, 439–447 (2001). [CrossRef]

]

αint=K0+ΓK1N
(4)

The net gain coefficient can be expressed as

g(N,ωj)=Γgc(N,ωj)αint(N)
(5)

2.2 Propagating of optical field

The propagating of incident optical fields is described as the Connelly’s model [17

17. M. J. Connelly, “Wideband semiconductor optical amplifier steady-state numerical model,” IEEE J. Quantum Electron. 37, 439–447 (2001). [CrossRef]

]. To further consider the contribution of phase change from CH, additional terms of ϕz=12Γβ=c,vαTβεTβgcS [21

21. A. M. a. J. Mørk, “Saturation induced by picosecond pulses in semiconductor optical amplifiers” J. Opt. Soc. Am. B. 14, 761 (1997). [CrossRef]

] are taken into account. However, the propagating of spontaneous emission field must be further discussed. The propagating equation of spontaneous emission fields is presented as

dSjASE±(z)dz=gSjASE±(z)+RjASE±
(6)

where Sj ASE± (z) accounts for the amplified spontaneously emitted photon density per unit frequency spacing centered in angular frequency ωj. Γ is the optical confinement factor. Rj ASE± is the amplified spontaneously emitted noise coupled into Sj ASE±.

Equation (6) is subject to boundary conditions [22

22. Y. Boucher and A. Sharaiha, “Spectral properties of amplified spontaneous emission in semiconductor optical amplifiers,” IEEE J. Quantum Electron. 36, 708–720 (2000). [CrossRef]

]

SjASE+(L+)=(1R2)βrspvg(1exp(gL)g)(1+R1exp(gL))T(vj)
(7)
SjASE(0)=(1R1)βrspvg(1exp(gL)g)(1+R2exp(gL))T(vj)
(8)
T(vj)=exp(gL)(1R1R2exp(gL))2{11+msin2(Φ2)}
(9)

where β is the spontaneous emission coupling factor. vg is the group velocity.

Assuming that the carrier density is spatial homogeneity, the solution of (6) is

SjASE±(z)=RjASE±g[C±exp(±gz)1]
(10)

where

C+=[(1R1)+R1exp(gL)(1R2)1R1R2exp(2gL)]
(11)
C=[(1R2)+R2exp(gL)(1R1)1R1R2exp(2gL)]exp(gL)
(12)
RjASE(±)=βrspvg1R1R2exp(2gL)(1R1R2exp(gL))2{11+msin2(Φ2)}
(13)

2.3 Multisection model & numerical simulation

The carrier density at z is governed by the rate equation

dN(z)dt=IeVR(N)iRsti,i(N)RASE(N)
(14)

where I is the SOA bias current. e is the elementary charge of the electron. V is the active region volume. The second term to fourth term on the right hand of the Eq. (14) account for the spontaneous recombination rate, stimulated emission recombination rate from pump (i = 1) and probe (i = 2) lights and ASE optical field, respectively, which are expressed as

R(N)=(Arad+Anrad)N+(Brad+Bnrad)N2+CaugN3
(15)
Rsti,i(N)=Γgcvg(Si++Si)
(16)
RASE(N)=Γgc(ω)vg(SASE++SASE)
=Γgc(ω)vgRjASEg(C+exp(gz)+Cexp(gz)2)
(17)

The parameters of the cubic polynomial on the right hand of the Eq. (15) are as shown in table I.

The numerical simulation is based on the multisection model as shown in Fig. 1. The carrier density in each section is supposed as spatial homogeneity; however the optical intensity is exponentially varied along the propagating direction. The pump-probe scheme is used to detect the gain recovery process.

The stimulated emission rate induced by incident optical fields and amplified spontaneous emission in section m(m = 1,2,…,M) can be expressed as

Rsti,i(Nm)=Γgc(Nm,ωi)vgexp[g(Nm,ωi)Δl]1g(Nm,ωi)Δl(Si,m++Si,m+1)
(18)
RASE(Nm)=Γgc(ω)vgΔωj(S¯jASE++S¯jASE)
=Γgc(ω)vgΔωj[exp[g(Nm,ωj)Δl]1g(Nm,ωj)Δl(Sj,mASE++Sj,m+1ASE)
+2RjASE+(Nm)g(Nm,ωj)]2RjASE+(Nm)g(Nm,ωj)
(19)
Fig. 1. The propagating of optical fields in the detailed wideband model for SOA

Table 1. Symbols and values for calculating

table-icon
View This Table

The numerical simulation is combined with the static and successively dynamic processes as shown in Fig. 2 where the two steps are referring to the dash and dot box respectively. Every element in carrier array is the value of carrier density in each section. Every column of optical field matrix consists of optical intensities (or electric intensities for incident lights) of different frequencies in the same section; while every row is composed by optical (electric) intensities of a monochromatic frequency light in different sections. The static simulation starts with an arbitrary initial value of one-dimensional carrier density array. The static simulation based on the Newton iteration method aims at the right hand of the Eq. (14) (ordering to f (n)) approaching to zero for each section. The iteration continues until the maximum percentage change of the carrier density array between successive iteration is less than the desired tolerance.

Fig. 2. The flowchart of the algorithm for static and dynamic simulation. The dash box and dot box correspond to static and dynamic simulation respectively.

The results of static simulation, including the distribution of optical (electrical) fields and carrier density, are set as the initial value of dynamic simulation. For dynamic simulation, the update of carrier density and optical (electrical) fields in each section after every timeslice Δt is governed by the coupling rate equations described in the preceding section. The change of effective refractive index in each section is proportional to carrier density, expressed as Δneq=dneqdNΔN . After the pump pulse is turned off, the incident electrical fields and ASE optical field output from the front and rear facet of the SOA and the average carrier density in the SOA for each timeslice are recorded. The simulation based on the parallel calculation, including two incident lights, 588 discrete frequencies of spontaneous emission fields and 1,000 timeslices of pump pulse sequence can finish within five minutes.

3. Characteristics evaluation of facet reflectivity

The design on facets reflections may include two coating schemes, reflection coating on two facets or AR coating on front facet and reflection coating on rear facet. The reflection coating on two facets makes the amplifier as a high-finesse resonator. As a result, the carrier density will be modulated by the resonated pulse which introduces significant patterning. To address this problem, we suggest antireflection coating on the front facet to minimize the resonance. However, the pulse reflected from the rear facet can still induce significant impact on the distribution of carrier density throughout the amplifier as the reflectivity is high enough. Thereby, the acceleration of gain recovery is limited by the two-pass traveling time of signal pulse, the duration of which is less than twenty picoseconds for long SOA.

3.1 Dependence of fundamental XM characteristics on facet reflectivity

Our reflection design focus on the rear facet under the condition that the reflectivity of the front facet is as low as 10-6. The reflection or reflectivity mentioned below is corresponding to rear facet. The gain recovery time is defined as the duration time needed for the gain compression recover to 1/e of the initial compression on the assumption that the gain recovers to the initial state exponentially. The phase change is always referring to the maximum phase change induced by pump pulse during the pulse duration. The parameters used in simulation are listed in table I. The injection density of SOA is set to 10kA/cm 2 for the following simulation. The wavelength of probe and pump lights are fixed at 1550nm and 1559nm respectively.

The spectral properties of spontaneously emitted noises output from front and rear facet of the SOA in absence of incident light are shown in Fig. 3 for two different resonant cavities, respectively. The length of SOA is set to 1mm here. Figure 3 shows an apparent red-shift of ASE peak dependent on the facet reflectivity by reason of red-shift of gain spectrum as well as the spontaneous emission source for low carrier density in the high reflective cavity. The ASE output from front facet is lager than rear facet in the two cavities under the condition R 1 > R 2.

Fig. 3. Spontaneously emitted field at front (F) and rear (R) facet with R 2 = 10-4 and R 2 = 0.3, respectively. R 1 = 10-6 for both resonant cavities.

The chip gain versus facet reflectivity for different probe powers and lengths of SOA is shown in Fig. 4 (output from rear facet) and Fig. 5 (output from front facet). The chip gain in long SOA is larger than that in short one for low reflectivities and week incident optical fields. The reason can be explained as sufficient amplification in a long active waveguide without saturation. However, the derivation of chip gain between two lengths of SOAs can be hardly distinguished if the gain already saturates after the first half of amplification in the long SOA for high facet reflectivities.

Fig. 4. Chip gain of probe wave at rear facet versus reflectivity for 0.5mm (open circle) and 1mm (solid circle) lengths of waveguides and different input probe powers (from top to bottom): -20dBm, -10dBm and 0dBm.
Fig. 5. Chip gain of probe wave at front facet versus reflectivity for 0.5mm (open circle) and 1mm (solid circle) lengths of waveguides and different input probe powers (from top to bottom): -20dBm, -10dBm and 0dBm.

The gain recovery times at front and rear facet versus reflectivity for two different lengths of SOA are shown in Figs. 6(a)-6(c). The peak power and full width at half maximum (FWHM) of pump pulse are set to 5mW and 8.3ps respectively. The power of probe light is set to -20dBm, -10dBm and 0dBm in Figs. 6(a)-6(c) respectively to evaluate the gain recovery of SOA for different facet reflectivities

The gain recovery time can be approximately reduced by 50% of average in Figs. 6(a)-6(c). The long SOA proceeds over the short one because of shorter effective carrier lifetime induced by higher optical intensity. However, the gain recovery time doesn’t change significantly as deep saturation in the SOA when the reflectivity is high enough. In other words, a reflectivity higher than a critical value takes little effect on reducing gain recovery time; however, the other important characteristics must be optimized simultaneously which will be discussed in following paragraphs.

The phase changes as a function of reflectivity for three powers of probe lights are shown in Figs. 7(a)-7(c), respectively. In XPM systems, a large phase variation is expected for being induced by a small energy of modulation pump pulse. The long SOA also reveals higher performance than short one in this aspect. The phenomenon can be attributed to the length of the active waveguide which is proportional to the phase change. The phase change of output from front facet almost duplicates the value output from rear facet because of two-pass amplification. As a result of deep saturation, the phase change keeps similarity for different reflections when a large probe power injects into the SOA [Fig. 7(c)]. Further more, sufficient facet reflection produces the reflected pulse with a considerable power concomitantly. As the competition of carrier depletion from probe and pump lights, the phase change decease to a bottommost level before arising, as shown in Figs. 7(a)-7(c).

Fig. 6. The gain recovery time versus reflectivity. The powers of probe waves are (a)-20dBm, (b)-10dBm and (c)0dBm, respectively.
Fig. 7. The phase change versus reflectivity. The powers of probe waves are (a)-20dBm, (b)-10dBm and (c)0dBm, respectively.
Fig. 8. The extinction ratio versus reflectivity. The powers of probe waves are (a)-20dBm, (b)-10dBm and (c)0dBm, respectively.

3.2 Dependence of fundamental XM characteristics on the wavelength of probe wave for HR-SOA

It’s noticed in the preceding comparison that the reflectivity beyond a critical value contributes less additional improvement to the dynamic characteristics of SOA. Therefore, it is supposed that the SOA with AR coating on front facet (R 1= 10-6) and cleaved rear facet (R 2 = 0.3) can attain great improvement of dynamic characteristics with low cost. In following simulations, the wavelength and FWHM of pump pulse are set to 1559nm and 8.3ps respectively. The power of probe light is set to -10dBm. The length of SOA is 1mm.

In terms of XPM, the phase change of π induced by a small pulse energy is preferable. The probe light at gain peak wavelength achieves low gain recovery time while introducing high saturation. The required peak power of pump pulse for XPM-induced phase change of π and gain recovery time at front and rear output facet versus the probe wavelength are as shown in Fig. 9. For XGM scheme, the required pump power for XGM-induced ER of 10dB and gain recovery time at front and rear output facet versus the probe wavelength are as shown in Fig. 10.

Fig. 9. The required pump peak power for XPM-induced phase change of π and gain recovery time at front (solid line) and rear (dash line) output facet respectively, as a function of wavelength of probe light.
Fig. 10. The required pump peak power for XGM-induced ER of 10dB and gain recovery time at front (solid line) and rear (dash line) output facet respectively, as a function of wavelength of probe light.

From Fig. 9 and Fig. 10, it’s demonstrated that the gain recovery time can be reduced to forty picoseconds while the probe light is operated near gain peak wavelength, and accordingly a large pump power is necessary. The results reflect the property of gain spectrum. Owning to the asymmetry of the curves, it is suggested that up-conversion for XPM and down-conversion for XGM are preferable. For the practical operation, a fast dynamic response of chip gain and moderate operation condition must be balanced.

4. Conclusion

5. Acknowledgments

This work was partially supported by National Natural Science Foundation of China (Grant No. 60407001), National High Technology Developing Program of China (Grant No. 2006AA03Z0414), the Science Fund for Distinguished Young Scholars of Hubei Province (Grant No. 2006ABB017), the Program for New Century Excellent Talents in Ministry of Education of China (Grant No. NCET-04-0715).

References and links

1.

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989). [CrossRef]

2.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14942–954 (1996). [CrossRef]

3.

R. S. T. G. Eisenstein, J. M. Wiesenfeld, P. B. Hansen, G. Raybon, B. C. Johnson, T. J. Bridges, F. G. Storz, and C. A. Burrus, “Gain recovery time of traveling-wave semiconductor optical amplifiers,” Appl. Phys. Lett. 54, 454–456 (1989). [CrossRef]

4.

P. J. A. Thiis, L. F. Tiemeijer, J. J. M. Binsma, and T. Van Dongen, “Progress in long-wavelength strained-layer InGaAs(P) quantum-well semiconductor lasers and amplifiers,” IEEE J. Quantum Electron. 30, 477–499 (1994). [CrossRef]

5.

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” IEEE Photon. Technol. Lett. 18, 2323–2325 (2006). [CrossRef]

6.

H. Sun, Q. Wang, H. Dong, G. Zhu, N. K. Dutta, and J. Jaques, “Gain dynamics and saturation property of a semiconductor optical amplifier with a carrier reservoir,” IEEE Photon. Technol. Lett. 18, 196–198 (2006). [CrossRef]

7.

S. S. P. Borri, W. Langbein, U. Woggon, A. E. Zhukov, V. M. Ustinov, N. N. Ledentsov, Zh. I. Alferov, D. Ouyang, and D. Bimberg “Ultrafast carrier dynamics and dephasing in InAs quantum-dot amplifiers emitting near 1.3-μm-wavelength at room temperature,” Appl. Phys. Lett. , 79, 2633–2635 (2001). [CrossRef]

8.

M. A. Dupertuis, J. L. Pleumeekers, T. P. Hessler, P. E. Selbmann, B. Deveaud, B. Dagens, and J. Y. Emery, “Extremely fast high-gain and low-current SOA by optical speed-up at transparency,” IEEE Photon. Technol. Lett. 12, 1453–1455 (2000). [CrossRef]

9.

G. Talli and M. J. Adams, “Gain dynamics of semiconductor optical amplifiers and three-wavelength devices,” IEEE J. Quantum Electron. 39, 1305–1313 (2003). [CrossRef]

10.

A. Matsumoto, K. Nishimura, K. Utaka, and M. Usami, “Operational design on high-speed semiconductor optical amplifier with assist light for application to wavelength converters using cross-phase modulation,” IEEE J. Quantum Electron. 42, 313–323 (2006). [CrossRef]

11.

A. Joon Tae, L. Jong Moo, and K. Kyong Hon, “Gain-clamped semiconductor optical amplifier based on compensating light generated from amplified spontaneous emission,” Electron. Lett. 39, 1140–1141 (2003). [CrossRef]

12.

P. Jongwoon, L. Xun, and H. Wei-Ping, “Performance simulation and design optimization of gain-clamped semiconductor optical amplifiers based on distributed Bragg reflectors,” IEEE J. Quantum Electron. 39, 1415–1423 (2003). [CrossRef]

13.

Y. Liu, E. Tangdiongga, Z. Li, Z. Shaoxian, W. Huug de, G. D. Khoe, and H. J. S. Dorren, “Error-free all-optical wavelength conversion at 160 gb/s using a semiconductor optical amplifier and an optical bandpass filter,” J. Lightwave Technol. 24, 230–236 (2006). [CrossRef]

14.

P. S. Andre, A. J. Teixeira, J. L. Pinto, and J. F. Rocha, “Performance analysis of wavelength conversion based on cross-gain modulation in reflective semiconductor optical amplifiers,” presented at the Microwave and Optoelectronics Conference, 2001. IMOC 2001. Proceedings of the 2001 SBMO/IEEE MTT-S International, 2001.

15.

D. Marcuse, “Computer model of an injection laser amplifier,” IEEE J. Quantum Electron. 19, 63–73 (1983). [CrossRef]

16.

T. Durhuus, B. Mikkelsen, and K. E. Stubkjaer, “Detailed dynamic model for semiconductor optical amplifiers and their crosstalk and intermodulation distortion,” J. Lightwave Technol. 10, 1056–1065 (1992). [CrossRef]

17.

M. J. Connelly, “Wideband semiconductor optical amplifier steady-state numerical model,” IEEE J. Quantum Electron. 37, 439–447 (2001). [CrossRef]

18.

D-X. Wang, J. Buck, K. Brennan, and I. Ferguson, “Numerical model of wavelength conversion through cross-gain modulation in semiconductor optical amplifiers,” Appl. Opt. 45, 4701–4708 (2006) [CrossRef] [PubMed]

19.

M. G. Davis and R. F. O’Dowd, “A transfer matrix method based large-signal dynamic model for multielectrode DFB lasers,” IEEE J. Quantum Electron. 30, 2458–2466 (1994). [CrossRef]

20.

A. Yariv, Optical electronics in modern communications (5th ed. Oxford University Press, New York, 1997).

21.

A. M. a. J. Mørk, “Saturation induced by picosecond pulses in semiconductor optical amplifiers” J. Opt. Soc. Am. B. 14, 761 (1997). [CrossRef]

22.

Y. Boucher and A. Sharaiha, “Spectral properties of amplified spontaneous emission in semiconductor optical amplifiers,” IEEE J. Quantum Electron. 36, 708–720 (2000). [CrossRef]

OCIS Codes
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(250.5980) Optoelectronics : Semiconductor optical amplifiers

ToC Category:
Optoelectronics

History
Original Manuscript: March 2, 2007
Revised Manuscript: June 1, 2007
Manuscript Accepted: June 25, 2007
Published: July 9, 2007

Citation
Enbo Zhou, Xinliang Zhang, and Dexiu Huang, "Analysis on dynamic characteristics of semiconductor optical amplifiers with certain facet reflection based on detailed wideband model," Opt. Express 15, 9096-9106 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-14-9096


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. P. Agrawal and N. A. Olsson, "Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers," IEEE J. Quantum Electron. 25, 2297-2306 (1989). [CrossRef]
  2. T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 14942-954 (1996). [CrossRef]
  3. R. S. T. G. Eisenstein, J. M. Wiesenfeld, P. B. Hansen, G. Raybon, B. C. Johnson, T. J. Bridges, F. G. Storz, and C. A. Burrus, "Gain recovery time of traveling-wave semiconductor optical amplifiers," Appl. Phys. Lett. 54, 454-456 (1989). [CrossRef]
  4. P. J. A. Thiis, L. F. Tiemeijer, J. J. M. Binsma, and T. Van Dongen, "Progress in long-wavelength strained-layer InGaAs(P) quantum-well semiconductor lasers and amplifiers," IEEE J. Quantum Electron. 30, 477-499 (1994). [CrossRef]
  5. L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, "Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells," IEEE Photon. Technol. Lett. 18, 2323-2325 (2006). [CrossRef]
  6. H. Sun, Q. Wang, H. Dong, G. Zhu, N. K. Dutta, and J. Jaques, "Gain dynamics and saturation property of a semiconductor optical amplifier with a carrier reservoir," IEEE Photon. Technol. Lett. 18, 196-198 (2006). [CrossRef]
  7. S. S. P. Borri, W. Langbein, and U. Woggon, A. E. Zhukov, V. M. Ustinov, N. N. Ledentsov, and Zh. I. Alferov, D. Ouyang and D. Bimberg "Ultrafast carrier dynamics and dephasing in InAs quantum-dot amplifiers emitting near 1.3-µm-wavelength at room temperature," Appl. Phys. Lett.  79, 2633-2635 (2001). [CrossRef]
  8. M. A. Dupertuis, J. L. Pleumeekers, T. P. Hessler, P. E. Selbmann, B. Deveaud, B. Dagens, and J. Y. Emery, "Extremely fast high-gain and low-current SOA by optical speed-up at transparency," IEEE Photon. Technol. Lett. 12, 1453-1455 (2000). [CrossRef]
  9. G. Talli and M. J. Adams, "Gain dynamics of semiconductor optical amplifiers and three-wavelength devices," IEEE J. Quantum Electron. 39, 1305-1313 (2003). [CrossRef]
  10. A. Matsumoto, K. Nishimura, K. Utaka, and M. Usami, "Operational design on high-speed semiconductor optical amplifier with assist light for application to wavelength converters using cross-phase modulation," IEEE J. Quantum Electron. 42, 313-323 (2006). [CrossRef]
  11. A. Joon Tae, L. Jong Moo, and K. Kyong Hon, "Gain-clamped semiconductor optical amplifier based on compensating light generated from amplified spontaneous emission," Electron. Lett. 39, 1140-1141 (2003). [CrossRef]
  12. P. Jongwoon, L. Xun, and H. Wei-Ping, "Performance simulation and design optimization of gain-clamped semiconductor optical amplifiers based on distributed Bragg reflectors," IEEE J. Quantum Electron. 39, 1415-1423 (2003). [CrossRef]
  13. Y. Liu, E. Tangdiongga, Z. Li, Z. Shaoxian, W. Huug de, G. D. Khoe, and H. J. S. Dorren, "Error-free all-optical wavelength conversion at 160 gb/s using a semiconductor optical amplifier and an optical bandpass filter," J. Lightwave Technol. 24, 230-236 (2006). [CrossRef]
  14. P. S. Andre, A. J. Teixeira, J. L. Pinto, and J. F. Rocha, "Performance analysis of wavelength conversion based on cross-gain modulation in reflective semiconductor optical amplifiers," presented at the Microwave and Optoelectronics Conference, 2001. IMOC 2001. Proceedings of the 2001 SBMO/IEEE MTT-S International, 2001.
  15. D. Marcuse, "Computer model of an injection laser amplifier," IEEE J. Quantum Electron. 19, 63-73 (1983). [CrossRef]
  16. T. Durhuus, B. Mikkelsen, and K. E. Stubkjaer, "Detailed dynamic model for semiconductor optical amplifiers and their crosstalk and intermodulation distortion," J. Lightwave Technol. 10, 1056-1065 (1992). [CrossRef]
  17. M. J. Connelly, "Wideband semiconductor optical amplifier steady-state numerical model," IEEE J. Quantum Electron. 37, 439-447 (2001). [CrossRef]
  18. D-X. Wang, J. Buck, K. Brennan and I. Ferguson, "Numerical model of wavelength conversion through cross-gain modulation in semiconductor optical amplifiers," Appl. Opt. 45, 4701-4708 (2006) [CrossRef] [PubMed]
  19. M. G. Davis and R. F. O'Dowd, "A transfer matrix method based large-signal dynamic model for multielectrode DFB lasers," IEEE J. Quantum Electron. 30, 2458-2466 (1994). [CrossRef]
  20. A. Yariv, Optical Electronics in Modern Communications 5th ed., (Oxford University Press, New York, 1997).
  21. A. M. a. J. Mørk, "Saturation induced by picosecond pulses in semiconductor optical amplifiers " J. Opt. Soc. Am. B. 14, 761 (1997). [CrossRef]
  22. Y. Boucher and A. Sharaiha, "Spectral properties of amplified spontaneous emission in semiconductor optical amplifiers," IEEE J. Quantum Electron. 36, 708-720 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited