OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 15 — Jul. 23, 2007
  • pp: 9843–9848
« Show journal navigation

High speed and high responsivity germanium photodetector integrated in a Silicon-On-Insulator microwaveguide

Laurent Vivien, Mathieu Rouvière, Jean-Marc Fédéli, Delphine Marris-Morini, Jean-François Damlencourt, Juliette Mangeney, Paul Crozat, Loubna El Melhaoui, Eric Cassan, Xavier Le Roux, Daniel Pascal, and Suzanne Laval  »View Author Affiliations


Optics Express, Vol. 15, Issue 15, pp. 9843-9848 (2007)
http://dx.doi.org/10.1364/OE.15.009843


View Full Text Article

Acrobat PDF (477 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the experimental demonstration of a germanium metal-semiconductor-metal (MSM) photodetector integrated in a SOI rib waveguide. Femtosecond pulse and frequency experiments have been used to characterize such photodetectors. The measured bandwidth under 6V bias is about 25 GHz at 1.55 µm wavelength with a responsivity as high as 1 A/W. The used technological processes are compatible with complementary-metal-oxide-semiconductor (CMOS) technology.

© 2007 Optical Society of America

1. Introduction

In this paper, we present the characterization of high speed and high responsivity Metal-Semiconductor-Metal (MSM) germanium on silicon photodetectors integrated in SOI rib waveguide.

2. Device structure and fabrication

The schematic diagram of the integrated Ge on Si photedetector is shown in Fig. 1.

Fig. 1. Ge photodetector integrated into a rib silicon-on-insulator waveguide: (a) schematic diagram of the integration of Ge on Si MSM photodetector in SOI Rib waveguide, (b) electric field profile for the fundamental transverse electric (TE) mode in the SOI waveguide (rib width 1µm; height 380 nm and etching depth 70 nm), (c) electric field amplitude in a longitudinal cross section of the photodetector (3D-FDTD calculation). The 95% absorption length is about 4 µm.

The Ge photodetector is directly integrated at the end of a SOI waveguide. A selective Ge epitaxial growth is made in a silicon recess (Fig. 1(a)). The input SOI waveguide is a slightly etched rib SOI optical waveguide with a height of 380 nm, an etching depth of 70 nm, and a rib width of 1 µm. The electric field profile for the fundamental mode in such a waveguide is given in fig. 1(b), showing the strong electromagnetic field confinement under the rib region. The electric field amplitude has been calculated along a longitudinal cross section of the integrated photodetector using the 3D Finite Difference Time Domain (3D FDTD) method. Results are plotted in Fig. 1(c) for λ=1.55µm wavelength. The transmission loss at the interface between silicon and germanium due to the refractive index difference is smaller than 0.1%. The overlap between the guided mode in the SOI waveguide and the germanium input face is larger than 90% when the thin silicon layer needed for the Ge epitaxial growth is less than 50 nm thick. The decrease of the electric field amplitude along the light propagation direction leads to the calculation that more than 95% of the light intensity is absorbed over a distance of about 6 µm. The dynamic capacitance of such a compact MSM Ge on Si photodetector, calculated using a small signal model, is about 0.05 fF/µm.

The integrated Ge on Si MSM photodetectors were fabricated on an undoped SOI substrate with a 1 µm thick buried oxide (BOX) layer. The slightly etched rib structures (waveguides, beam splitter, turns) were first made using standard 193-nm deep-UV lithographic patterning (minimum feature is as low as 150 nm), followed by reactive ion plasma etching. The measured propagation loss of such waveguides is about 0.1 dB/cm25. Then, a silicon recess was etched at the end of the rib waveguide, down to a 50-nm thick silicon film using 248-nm deep-UV lithography and RIE. The germanium film was selectively grown by Reduced Pressure Chemical Vapour Deposition (RP-CVD) after a surface cleaning using chemical and in situ hydrogen bake treatments. After the growth of a thin buffer layer (50 nm) at 400°C, a 280 nm thick Ge layer was grown at 730°C which gives a dislocation density as low as 3.106 dislocations/cm2. The global thickness of the Ge layer is then 330 nm to obtain a total height of 380 nm identical to the input waveguide thickness. The Ge absorbing layer length is 10 µm to insure total absorption of the input light. A few tens of nanometer thick silicon dioxide (SiO2) layer was then deposited onto the wafer using plasma-enhanced chemical vapour deposition (PECVD) and the wafers were chemically and mechanically planarized (CMP). Two separate openings (3µm×10µm) in the silicon oxide were patterned defining 1µm electrode spacing. Finally, TiTiNAlCu metal stack was deposited onto the wafer and coplanar electrodes were patterned using 248nm deep UV lithography and etching down to the SiO2 layer.

Fig. 2. Scanning electron microscope image of the integrated Ge on Si MSM photodetector cross-section: A silicon oxide layer onto the Ge layer defines the electrode spacing D. The thickness of the Ge layer grown on a 50 nm thick silicon layer is about 330 nm. The metal contact is directly deposited on Ge. The BOX thickness is 1µm.

Figure 2 shows a scanning electron microscope image of the whole cross-section of the integrated Ge on Si photodetector. The used processes are fully compatible with SOI CMOS technology and could be transferred in high-volume microelectronic manufacturing.

3. Experiments and results

Without any illumination, the dark current-voltage (I–V) characteristics have been recorded (Fig. 3). For bias voltages of 1 V and 5V, dark currents are about 130 µA and 300 µA respectively.

Fig. 3. Dark current variation with operating voltage: The dark current (without any illumination) is measured from -10V to +10V voltage for a 10µm long Ge on Si MSM photodetector.

The dark current is rather high and contributes to an additional noise. In order to evaluate dark current effect on the photodetector sensitivity, simulations have been performed using the method described in reference 26. A classical electronic receiver stage is considered which consists in a CMOS inverter-based transimpedance front-end amplifier. A small-signal analysis has been performed using SPICE simulations for various values of the dark current. The noise has contributions arising from the feedback resistance, the shot noise from detector dark current and photocurrent sources, and the transistor channel noise26. The required optical power to ensure a bit error rate (BER) of 10–18 has been determined as a function of the dark current level. A 300µA dark current leads to an increase of the input power of about 20% in comparison with photodetector without dark current to ensure a BER of 10–18 at frequency close to 50GHz.

The incident photons which are absorbed in germanium generate electron-hole pairs which are collected thanks to the applied electric field. The responsivity is defined as:

s(AW)=IPopt=ηqehυ=ηqλ(μm)1,24,where I is the photocurrent, Popt the input optical power, ηq the quantum efficiency, e the electron charge, h the Planck constant, ν the frequency and λ the wavelength. Light from a 1.55 µm laser source was coupled into the SOI waveguide using a lensed fibre. Guided light is then divided into two branches: a reference branch allows measuring the input power and the Ge photodetector is included in the second branch. The 1.55 µm wavelength light is completely absorbed in the 10 µm long Ge layer. The measured responsivity is 1±0.2 A/W at 1.55µm. That corresponds to external quantum efficiency close to 80 %. From 1V to 7V the MSM photodetector responsivity only varies by about 2%.

Fig. 4. Normalized photoresponse of the Ge on Si photodetector integrated in rib SOI waveguide: The response dependences are measured for a 10 µm long Ge on Si MSM integrated photodetector for 0.5V, 2V and 6V bias and 1.55 µm wavelength (a) The photoresponses are recorded on an sampling oscilloscope after femtosecond laser pulse illumination. The corresponding intrinsic response times are about 46 ps, 30 ps and 19 ps, respectively. (b) RF response as a function of frequency is directly measured from 0.1 GHz to 50 GHz. The corresponding bandwidths are about 8.5 GHz, 15.4 GHz and 25GHz, respectively.

The -3dB bandwidth of the Ge on Si photodetector has been investigated by time measurements (the pulse response is recorded after femtosecond (fs) pulse illumination) and frequency measurements up to 50 GHz. The pulse response has been recorded while illuminating the device with 200 fs pulses fiber laser MHz (delivering 10 mW) at a repetition rate of 14. The incident light was injected into the waveguide using a lensed fibre and absorbed by the active area of the photodetector. The photocurrent pulse was then recorded using a sampling oscilloscope bias-T, cable and RF-probe set-up with a 67 GHz bandwidth. Figure 4(a) presents the recorded impulse responses for several bias voltages. The response of the integrated Ge on Si MSM photodetector results from the convolution between a Gaussian profile which characterizes the acquisition system response and a double exponential response (exp(-t/τ1)+ exp(-t/τ2)). The intrinsic response time of the Ge on Si photodetector is then determined from the best fits. The time constant τ1 is extremely short (<4ps) and it is the second (τ2) which mainly characterizes the intrinsic response time of the photodetector. The transit-time-limited 3-dB cut-off frequency is given by reference 26: f3dB ~0.443/τ.

The response times τ2 obtained using such a deconvolution are 46 ps (9.5 GHz), 30 ps (14.7 GHz) and 19 ps (23.3 GHz) for 0.5V, 2V and 6V bias, respectively.

The frequency response has also been determined using an Agilent 86030A lightwave component analyzer which provides measurement capability for optical and microwave components from 0.1 GHz to 50 GHz. Auto-calibration of the test bench optical modulator was carried out up to 50 GHz. The integrated Ge on Si MSM photodector was biased using microwave probes. Figure 4(b) reports the normalized RF responses as a function of frequency from 0.1 GHz to 50 GHz. The measured -3-dB bandwidths are 8.5GHz, 15GHz and 25GHz for 0.5V, 2V and 6V bias, respectively. The variation of the 3-dB bandwidth obtained for both RF and pulse experiments as a function of bias voltage is reported in Fig. 5. Results obtained with both RF and pulse experiments are quite consistent. At 1V and 3V bias, the cut-off frequencies are about 10 GHz, 17 GHz, respectively and beyond 6V bias the -3-dB bandwidth exceeds 25 GHz.

Fig. 5. -3dB bandwidth versus bias voltage: The cut-off frequency is determined for bias voltage ranging from 0V to 7V for a 10 µm long Ge on Si MSM integrated photodetector at a wavelength of 1.55 µm from both RF and pulse experiments.

4. Conclusion

Such an integrated Ge on Si MSM photodetector is well suited for monolithic integration with CMOS electronics. It offers high frequency and large sensitivity responses. Although dark current is rather high, it does not introduce strong additional noise. It could be significantly reduced by adding amorphous Ge to increase the Schottky barrier height27 and/or by improving the quality of Ge layer in order to reduce the number of dislocations. In addition, increasing the mode confinement in the SOI waveguide will allow reducing the electrode spacing. The photodetector bandwidth is roughly inversely proportional to the electrode spacing23, so it could be increased by a factor of 2 without changing the quantum efficiency.

Acknowledgments

This work was supported by the French RMNT program “CAURICO” (Ultra-high speed optoelectronic devices for optical interconnects). The authors acknowledge E. Belhaire, D. Bouchier, M. Halbwax and L. Meignien from IEF, P. Cogez, B. Sautreuil and J. Torres from ST Microelectronics, S. Kolev from AdVEOtec and J.M. Hartmann from CEA/LETI for fruitful discussions and technical help. They also acknowledge the staff of the 200 mm clean room of the LETI for the fabrication of high quality optical structures.

References and links

1.

G.T. Reed, The optical age of silicon, Nature 427, 595–596 (2004).

2.

International Technology Roadmap for Semiconductors (ITRS), 2006 Edition, Interconnect topic

3.

D. A. B. Miller, Optical Interconnects to Silicon, IEEE J. Sel. Top. Quantum Electron. 6, 1312–1317 (2000). [CrossRef]

4.

R.A. Soref, Silicon-based optoelectronics, Proc. IEEE 81, 1687–1706 (1993), [CrossRef]

5.

L. Vivien, S. Lardenois, D. Pascal, S. Laval, E. Cassan, J-L. Cercus, A. Koster, J-M. Fédéli, and M. Heitzmann, Experimental demonstration of a low-loss optical H-tree distribution using silicon-on-insulator microwaveguides, App. Phys. Lett. 85, 701–703 (2004). [CrossRef]

6.

D. Marris, L. Vivien, D. Pascal, M. Rouvière, E. Cassan, A. Lupu, S. Laval, J-M. Fédéli, and L. El Melhaoui, Ultra low loss of 10 successive divisions using silicon-on-insulator microwaguides, Appl. Phys. Lett. 87, 211102–211104 (2005). [CrossRef]

7.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, An all -silicon Raman laser, Nature 433, 292–294 (2005). [CrossRef] [PubMed]

8.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, A continuous-wave Raman silicon laser, Nature 433, 725–728 (2005). [CrossRef] [PubMed]

9.

M.A. Foster, A.C. Turner, J.E. Sharping, S. Schimdt, M. Lipson, and A.L. Gaeta, Broad-band optical parametric gain on a silicon photonic chip, Nature 441, 960–963 (2006). [CrossRef] [PubMed]

10.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor Nature 427, 615–618 (2004). [CrossRef] [PubMed]

11.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, Micrometre-scale silicon electro-optic modulator, Nature 435, 325–327 (2005). [CrossRef] [PubMed]

12.

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U.D. Keil, and T. Franck, High speed silicon Mach Zehnder modulator, Opt. Express 13, 3129–3135 (2005). [CrossRef] [PubMed]

13.

D. Marris-Morini, X. Le Roux, L. Vivien, E. Cassan, D. Pascal, M. Halbwax, S. Maine, and S. Laval, Optical modulation by carrier depletion in a silicon PIN diode, Opt. Express 14, 10838–10843 (2006). [CrossRef] [PubMed]

14.

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, High-speed optical modulation based on carrier depletion in a silicon waveguide, Opt. Express 15, 660–668 (2007). [CrossRef] [PubMed]

15.

Y. Ishikawa, K. Wada, D.D. Cannan, L. Jifeng, D.L. Hsin-Chiao, and L.C. Kimerling, Strain-induced band gap shrinkage in Ge grown on Si substrate, Appl. Phys. Lett. 82, 2044–2046 (2002). [CrossRef]

16.

S. Fama, L. Colace, G. Masini, G. Assanto, and H.-C. Luan, High performance germanium-on-silicon detectors for optical communications, Appl. Phys Lett. 81, 586–588 (2002). [CrossRef]

17.

M. Halbwax, M. Rouviere, Y. Zheng, D. Debarre, L.H. Nguyen, J-L. Cercus, C. Clerc, V. Yam, S. Laval, E. Cassan, and D. Bouchier, UHV-CVD growth and annealing of thin fully relaxed Ge films on (0 0 1)Si, Opt. Mater. 27, 822–826 (2005). [CrossRef]

18.

J-M. Hartmann, A. Abbadie, A.M. Papon, P. Holliger, G. Rolland, T. Billon, J-M. Fédéli, M. Rouvière, L. Vivien, and S. Laval, Reduced pressure-chemical vapor deposition of Ge thick layers on Si(001) for 1.3–1.55-µm photodetection, J. App. Phys. 95, 5905–5907 (2004). [CrossRef]

19.

M. Rouvière, M. Halbwax, J-L. Cercus, E. Cassan, L. Vivien, D. Pascal, M. Heitzmann, J-M. Hartmann, and S. Laval, Integration of germanium waveguide photodetectors for intrachip optical interconnects, Opt. Eng. 44, 75402–75406 (2005). [CrossRef]

20.

G. Dehlinger, S.J. Koester, J.D. Schaub, J.O. Chu, Q.C. Ouyang, and A. Grill, High-speed germanium-on-SOI lateral PIN photodiodes, IEEE Photon. Technol. Letters 16, 2547–2549 (2004). [CrossRef]

21.

O.I. Dosunmu, D.D. Cannon, M.K. Emsley, B. Ghyselen, J. Liu, L.C. Kimerling, and M. Selim Ünlü, Resonant Cavity Enhanced Ge Photodetectors for 1550nm Operation on Reflecting Si Substrates, IEEE J. Sel. Top. Quantum Electron. 10, 694–701 (2004). [CrossRef]

22.

M. Jutzi, M. Berroth, G. Wöhl, M. Oehme, and E. Kasper, Ge-on-Si Vertical Incidence Photodiodes with 39- GHz bandwidth, IEEE Photon. Technol. Lett. 17, 1510–1512 (2005). [CrossRef]

23.

M. Rouvière, L. Vivien, X. Le Roux, J. Mangeney, P. Crozat, C. Hoarau, E. Cassan, D. Pascal, S. Laval, JM. Fédéli, J.F. Damlencourt, and J-M. Hartmann, Ultrahigh speed germanium-on-silicon-on-insulator photodetectors for 1.31 and 1.55 µm operation, Appl. Phys. Lett. 87, 231109–231111 (2005) [CrossRef]

24.

L. Colace, G. Masini, A. Altieri, and G. Assanto, Waveguide photodetectors for the near infrared in polycristalline germanium on silicon, IEEE Photon. Technol. Lett. 18, 1094–1096 (2006) [CrossRef]

25.

S. Lardenois, D. Pascal, L. Vivien, E. Cassan, S. Laval, R. Orobtchouk, M. Heitzmann, N Bouzaida, and L. Mollard, Low-loss submicrometer silicon-on-insulator rib waveguides and corner mirrors, Opt. Lett. 28, 1150–1152 (2003). [CrossRef] [PubMed]

26.

E. Cassan, D. Marris, M. Rouviere, S. Laval, L. Vivien, and A. Koster, Comparison Between Electrical and Optical Clock Distribution for CMOS Integrated Circuits, Opt. Eng. 44, 105402-1–105402-10 (2005). [CrossRef]

27.

J. M. Liu, Photonic Devices, (Cambridge university Press, New York, 2005).

28.

J. Oh, S.K. Baanerjee, and J.C. Campbell, Metal-germanium-metal photodetectors on heteroepitaxial Ge-on-Si with amorphous Ge Schottky barrier enhancement layers, IEEE Photon. Technol. Lett. 16, 581–583 (2004). [CrossRef]

OCIS Codes
(130.0250) Integrated optics : Optoelectronics
(130.1750) Integrated optics : Components
(130.3120) Integrated optics : Integrated optics devices
(200.4650) Optics in computing : Optical interconnects
(230.5160) Optical devices : Photodetectors

ToC Category:
Integrated Optics

History
Original Manuscript: March 14, 2007
Revised Manuscript: May 14, 2007
Manuscript Accepted: June 8, 2007
Published: July 20, 2007

Citation
Laurent Vivien, Mathieu Rouvière, Jean-Marc Fédéli, Delphine Marris-Morini, Jean François Damlencourt, Juliette Mangeney, Paul Crozat, Loubna El Melhaoui, Eric Cassan, Xavier Le Roux, Daniel Pascal, and Suzanne Laval, "High speed and high responsivity germanium photodetector integrated in a Silicon-On-Insulator microwaveguide," Opt. Express 15, 9843-9848 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-15-9843


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G.T. Reed, The optical age of silicon, Nature 427, 595-596 (2004).
  2. International Technology Roadmap for Semiconductors (ITRS), 2006 Edition, Interconnect topic
  3. D. A. B. Miller, Optical Interconnects to Silicon, IEEE J. Sel. Top. Quantum Electron. 6, 1312-1317 (2000). [CrossRef]
  4. R.A. Soref, Silicon-based optoelectronics, Proc. IEEE 81, 1687-1706 (1993), [CrossRef]
  5. L. Vivien, S. Lardenois, D. Pascal, S. Laval, E. Cassan, J-L. Cercus, A. Koster, J-M. Fédéli, M. Heitzmann, Experimental demonstration of a low-loss optical H-tree distribution using silicon-on-insulator microwaveguides, App. Phys. Lett. 85, 701-703 (2004). [CrossRef]
  6. D. Marris, L. Vivien, D. Pascal, M. Rouvière, E. Cassan, A. Lupu, S. Laval, J-M. Fédéli, L. El Melhaoui, Ultra low loss of 10 successive divisions using silicon-on-insulator microwaguides, Appl. Phys. Lett. 87, 211102-211104 (2005). [CrossRef]
  7. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, M. Paniccia, An all -silicon Raman laser, Nature 433, 292-294 (2005). [CrossRef] [PubMed]
  8. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, M. Paniccia, A continuous-wave Raman silicon laser, Nature 433, 725-728 (2005). [CrossRef] [PubMed]
  9. M.A. Foster, A.C. Turner, J.E. Sharping, S. Schimdt, M. Lipson, A.L., Gaeta, Broad-band optical parametric gain on a silicon photonic chip, Nature 441, 960-963 (2006). [CrossRef] [PubMed]
  10. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitorNature 427, 615-618 (2004). [CrossRef] [PubMed]
  11. Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, Micrometre-scale silicon electro-optic modulator, Nature 435, 325-327 (2005). [CrossRef] [PubMed]
  12. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U.D. Keil, T. Franck, High speed silicon Mach Zehnder modulator, Opt. Express 13, 3129-3135 (2005). [CrossRef] [PubMed]
  13. D. Marris-Morini, X. Le Roux, L. Vivien, E. Cassan, D. Pascal, M. Halbwax, S. Maine, S. Laval, Optical modulation by carrier depletion in a silicon PIN diode, Opt. Express 14, 10838-10843 (2006). [CrossRef] [PubMed]
  14. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, M. Paniccia, High-speed optical modulation based on carrier depletion in a silicon waveguide, Opt. Express 15, 660-668 (2007). [CrossRef] [PubMed]
  15. Y. Ishikawa, K. Wada, D.D. Cannan, L. Jifeng, D.L. Hsin-Chiao, L.C. Kimerling, Strain-induced band gap shrinkage in Ge grown on Si substrate, Appl. Phys. Lett. 82, 2044-2046 (2002). [CrossRef]
  16. S. Fama, L. Colace, G. Masini, G. Assanto, H.-C. Luan, High performance germanium-on-silicon detectors for optical communications, Appl. Phys Lett. 81, 586-588 (2002). [CrossRef]
  17. M. Halbwax, M. Rouviere, Y. Zheng, D. Debarre, L.H. Nguyen, J-L. Cercus, C. Clerc, V. Yam, S. Laval, E. Cassan, D. Bouchier, UHV-CVD growth and annealing of thin fully relaxed Ge films on (0 0 1)Si, Opt. Mater. 27, 822-826 (2005). [CrossRef]
  18. J-M. Hartmann, A. Abbadie, A.M. Papon, P. Holliger, G. Rolland, T. Billon, J-M. Fédéli, M. Rouvière, L. Vivien, S. Laval, Reduced pressure-chemical vapor deposition of Ge thick layers on Si(001) for 1.3-1.55-µm photodetection, J. App. Phys. 95, 5905-5907 (2004). [CrossRef]
  19. M. Rouvière, M. Halbwax, J-L. Cercus, E. Cassan, L. Vivien, D. Pascal, M. Heitzmann, J-M. Hartmann, S. Laval, Integration of germanium waveguide photodetectors for intrachip optical interconnects, Opt. Eng. 44, 75402-75406 (2005). [CrossRef]
  20. G. Dehlinger, S.J. Koester, J.D. Schaub, J.O. Chu, Q.C. Ouyang, A. Grill, High-speed germanium-on-SOI lateral PIN photodiodes, IEEE Photon. Technol. Letters 16, 2547-2549 (2004). [CrossRef]
  21. O.I. Dosunmu, D.D. Cannon, M.K. Emsley, B. Ghyselen, J. Liu, L.C. Kimerling, M. Selim Ünlü, Resonant Cavity Enhanced Ge Photodetectors for 1550nm Operation on Reflecting Si Substrates, IEEE J. Sel. Top. Quantum Electron. 10, 694-701 (2004). [CrossRef]
  22. M. Jutzi, M. Berroth, G. Wöhl, M. Oehme, E. Kasper, Ge-on-Si Vertical Incidence Photodiodes with 39-GHz bandwidth, IEEE Photon. Technol. Lett. 17, 1510-1512 (2005). [CrossRef]
  23. M. Rouvière, L. Vivien, X. Le Roux, J. Mangeney, P. Crozat, C. Hoarau, E. Cassan, D. Pascal, S. Laval, J-M. Fédéli, J.F. Damlencourt, J-M. Hartmann, Ultrahigh speed germanium-on-silicon-on-insulator photodetectors for 1.31 and 1.55 µm operation, Appl. Phys. Lett. 87, 231109-231111 (2005) [CrossRef]
  24. L. Colace, G. Masini, A. Altieri, G. Assanto, Waveguide photodetectors for the near infrared in polycristalline germanium on silicon, IEEE Photon. Technol. Lett. 18, 1094-1096 (2006) [CrossRef]
  25. S. Lardenois, D. Pascal, L. Vivien, E. Cassan, S. Laval, R. Orobtchouk, M. Heitzmann, N Bouzaida, L. Mollard, Low-loss submicrometer silicon-on-insulator rib waveguides and corner mirrors, Opt. Lett. 28, 1150-1152 (2003). [CrossRef] [PubMed]
  26. E. Cassan, D. Marris, M. Rouviere, S. Laval, L. Vivien, A. Koster, "Comparison Between Electrical and Optical Clock Distribution for CMOS Integrated Circuits," Opt. Eng. 44, 105402-1 - 105402-10 (2005). [CrossRef]
  27. J. M. Liu, Photonic Devices, (Cambridge university Press, New York, 2005).
  28. J. Oh, S.K. Baanerjee, J.C. Campbell, Metal-germanium-metal photodetectors on heteroepitaxial Ge-on-Si with amorphous Ge Schottky barrier enhancement layers, IEEE Photon. Technol. Lett. 16, 581-583 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited